Пример #1
0
def test_ethosu_conv2d():
    ifm = relay.var("ifm", shape=(1, 10, 20, 30), dtype="uint8")
    weight = relay.var("weight", shape=(40, 3, 3, 30), dtype="uint8")
    scale_bias = relay.var("scale_bias", shape=(40, 10), dtype="uint8")
    lut = relay.var("lut", shape=(), dtype="uint8")
    conv = ethosu_ops.ethosu_conv2d(
        ifm,
        weight,
        scale_bias,
        lut,
        ifm_scale=0.5,
        ifm_zero_point=10,
        weight_zero_point=12,
        ofm_scale=0.25,
        ofm_zero_point=14,
        ofm_channels=40,
        padding=(1, 1, 1, 1),
        kernel_shape=(3, 3),
        strides=(1, 1),
        dilation=(1, 1),
    )
    expr = relay.Function(relay.analysis.free_vars(conv), conv)
    mod = tvm.IRModule.from_expr(expr)
    mod = relay.transform.InferType()(mod)
    lowered = lower_to_te(mod["main"])
    assert len(lowered.outputs) == 1
    assert len(lowered.inputs) == 4
    conv2d_compute = Convolution2DCompute.from_output(lowered.outputs[0])
    assert conv2d_compute.conv2d.name == "ethosu_conv2d"
    input_shapes = set()
    for inp in lowered.inputs:
        input_shapes.add(tuple([x.value for x in inp.shape]))
    assert input_shapes == {(40, 10), (1, 10, 20, 30), (40, 3, 3, 30), ()}
Пример #2
0
 def _cascader(cached_func, const_dict, sch):
     weight = cached_func.inputs[1]
     scale_bias = cached_func.inputs[2]
     out = cached_func.outputs[0]
     conv_compute = Convolution2DCompute.from_output(out)
     co = conv_compute.split(sch, 3, 10)
     cache_weight = sch.cache_read(weight, "global", [conv_compute.conv2d])
     cache_scale_bias = sch.cache_read(scale_bias, "global", [conv_compute.conv2d])
     sch[cache_weight].compute_at(sch[out], co)
     sch[cache_scale_bias].compute_at(sch[out], co)
Пример #3
0
 def _planner(te_graph, const_dict, sch):
     weights = te_graph.inputs[1]
     bias = te_graph.inputs[2]
     out = te_graph.outputs[0]
     conv_compute = Convolution2DCompute.from_output(out)
     co = conv_compute.split(sch, 3, 2)
     cache_weights = sch.cache_read(weights, "global", [conv_compute.conv2d])
     cache_bias = sch.cache_read(bias, "global", [conv_compute.conv2d])
     sch[cache_weights].compute_at(sch[out], co)
     sch[cache_bias].compute_at(sch[out], co)