def test_tuple_passing(): x = relay.var('x', type_annotation=relay.ty.TupleType([ relay.ty.TensorType((), 'int64'), relay.ty.TensorType((), 'int64') ])) fn = relay.Function([x], relay.expr.TupleGetItem(x, 0)) mod = relay.Module({}) gv = relay.GlobalVar('fn') mod[gv] = fn mod.entry_func = gv mod = relay.transform.InferType()(mod) ctx = tvm.cpu() target = tvm.target.create('llvm') exec = relay.create_executor(mod=mod, ctx=ctx, target=target) f = exec.evaluate(gv) # First use a Python tuple. out = f((10, 8)) tvm.testing.assert_allclose(out.asnumpy(), np.array(10)) # Second use a tuple value. value_tuple = TupleValue(TensorValue(np.array(11)), TensorValue(np.array(12))) out = f(value_tuple) tvm.testing.assert_allclose(out.asnumpy(), np.array(11))
def test_function_taking_adt_ref_tuple(): mod = relay.Module() prelude = relay.prelude.Prelude(mod) intrp = create_executor("debug", mod) nil_value = ConstructorValue(prelude.nil.tag, [], prelude.nil, []) cons_value = ConstructorValue( prelude.cons.tag, [TensorValue(np.random.rand(1, 10).astype('float32')), nil_value], prelude.cons, [relay.TensorType((1, 10), 'float32')]) ref_value = RefValue(TensorValue(np.random.rand(1, 10).astype('float32'))) tuple_value = TupleValue(*[ TensorValue(np.random.rand(1, 10).astype('float32')) for _ in range(10) ]) id_func = intrp.evaluate(prelude.id) res_nil = id_func(nil_value) assert res_nil.tag == nil_value.tag assert len(res_nil.fields) == 0 res_cons = id_func(cons_value) assert res_cons.tag == cons_value.tag assert len(res_cons.fields) == len(cons_value.fields) tvm.testing.assert_allclose(res_cons.fields[0].asnumpy(), cons_value.fields[0].asnumpy()) assert isinstance(res_cons.fields[1], ConstructorValue) assert res_cons.fields[1].tag == prelude.nil.tag assert len(res_cons.fields[1].fields) == 0 res_ref = id_func(ref_value) tvm.testing.assert_allclose(res_ref.value.asnumpy(), ref_value.value.asnumpy()) res_tuple = id_func(tuple_value) for i in range(10): tvm.testing.assert_allclose(res_tuple.fields[i].asnumpy(), tuple_value.fields[i].asnumpy())
def test_tensor_value(): x = relay.var("x", shape=(1, 10)) xx = np.ones((1, 10)).astype("float32") check_eval(relay.Function([x], x), [TensorValue(xx)], xx)
def pytorch_to_relay(tensor): #print(tensor.shape) return TensorValue( relay.const(tensor.detach().cpu().numpy().reshape((1, 300)), dtype='float32').data)