Пример #1
0
def clip_strategy_vta(attrs, inputs, out_type, target):
    strategy = OpStrategy()
    strategy.add_implementation(compute_clip_vta,
                                _strategy.wrap_topi_schedule(
                                    topi.generic.schedule_injective),
                                name="clip.vta")
    return strategy
Пример #2
0
def conv2d_strategy_ethosu(attrs, inputs, out_type, target):
    strategy = OpStrategy()
    strategy.add_implementation(
        create_ethosu_conv2d_compute,
        _strategy.wrap_topi_schedule(schedule_injective),
        name="ethosu_conv2d",
    )
    return strategy
Пример #3
0
def multiply_strategy_vta(attrs, inputs, out_type, target):
    strategy = OpStrategy()
    strategy.add_implementation(
        _strategy.wrap_topi_compute(multiply_packed),
        _strategy.wrap_topi_schedule(schedule_multiply_packed),
        name="multiply.vta",
    )
    return strategy
Пример #4
0
def dense_strategy_vta(attrs, inputs, out_type, target):
    """dense vta strategy"""
    if inputs[0].shape == 4:  # this implies the layout is packed
        strategy = OpStrategy()
        strategy.add_implementation(
            _strategy.wrap_compute_dense(dense_packed),
            _strategy.wrap_topi_schedule(schedule_dense_packed),
            name="dense_packed.vta")
        return strategy
    # If it's not packed, run on ARM CPU
    arm_tgt = tvm.target.arm_cpu(target.model)
    return _strategy.x86.dense_strategy_cpu(attrs, inputs, out_type, arm_tgt)
Пример #5
0
def conv2d_transpose_strategy_vta(attrs, inputs, out_type, target):
    """conv2d_transpose vta strategy"""
    dilation = topi.util.get_const_tuple(attrs.dilation)
    layout = attrs.data_layout
    assert dilation == (1, 1), "support for dilation limited to (1, 1)"

    if is_packed_layout(layout):
        strategy = OpStrategy()
        strategy.add_implementation(
            _strategy.wrap_compute_conv2d_transpose(conv2d_transpose_packed),
            _strategy.wrap_topi_schedule(schedule_conv2d_transpose_packed),
            name="conv2d_transpose_packed.vta")
        return strategy

    # If it's not packed, run on ARM CPU
    arm_tgt = tvm.target.arm_cpu(target.model)
    return _strategy.arm_cpu.conv2d_transpose_strategy_arm_cpu(attrs, inputs, out_type, arm_tgt)
Пример #6
0
def conv2d_strategy_vta(attrs, inputs, out_type, target):
    """conv2d vta strategy"""
    strategy = OpStrategy()
    kernel = inputs[1]
    dilation = topi.utils.get_const_tuple(attrs.dilation)
    groups = attrs.groups
    layout = attrs.data_layout

    assert dilation == (1, 1), "support for dilation limited to (1, 1)"
    if is_packed_layout(layout):
        if groups == 1:
            env = get_env()
            assert env.LOG_INP_WIDTH == 3, "only support 8bit inp for now"
            assert env.LOG_WGT_WIDTH == 3, "only support 8bit wgt for now"
            assert kernel.dtype == "int8"

            strategy.add_implementation(
                _strategy.wrap_compute_conv2d(conv2d_packed, True),
                _strategy.wrap_topi_schedule(schedule_conv2d_packed),
                name="conv2d_packed.vta",
            )
        else:  # group_conv2d
            strategy.add_implementation(
                _strategy.wrap_compute_conv2d(group_conv2d_packed,
                                              has_groups=True),
                _strategy.wrap_topi_schedule(schedule_group_conv2d_packed),
                name="group_conv2d_packed.vta",
            )
        return strategy

    # If it's not packed, run on ARM CPU
    arm_tgt = tvm.target.arm_cpu(target.model)
    return _strategy.arm_cpu.conv2d_strategy_arm_cpu(attrs, inputs, out_type,
                                                     arm_tgt)