Пример #1
0
def run_opt_pass(expr, passes):
    passes = passes if isinstance(passes, list) else [passes]
    mod = tvm.IRModule.from_expr(expr)
    seq = transform.Sequential(passes)
    with transform.PassContext(opt_level=3):
        mod = seq(mod)
    entry = mod["main"]
    return entry if isinstance(expr, relay.Function) else entry.body
Пример #2
0
 def test_pass_registration():
     passes = [module_pass, function_pass]
     opt_level = 2
     pass_name = "sequential"
     sequential = _transform.Sequential(passes=passes, opt_level=opt_level)
     pass_info = sequential.info
     assert pass_info.name == pass_name
     assert pass_info.opt_level == opt_level
Пример #3
0
    def get_partitoned_mod(mod, params, pattern_table):
        # This is required for constant folding
        mod["main"] = bind_params_by_name(mod["main"], params)

        remove_bn_pass = transform.Sequential([
            transform.InferType(),
            transform.SimplifyInference(),
            transform.FoldConstant(),
            transform.FoldScaleAxis(),
        ])
        composite_partition = transform.Sequential([
            remove_bn_pass,
            transform.MergeComposite(pattern_table),
            transform.AnnotateTarget("dnnl"),
            transform.PartitionGraph()
        ])

        with relay.build_config(opt_level=3, disabled_pass=["AlterOpLayout"]):
            return composite_partition(mod)
Пример #4
0
    def test_only_function_pass():
        # Check the subtract function.
        passes = [function_pass]
        sequential = _transform.Sequential(opt_level=1, passes=passes)
        ret_mod = sequential(mod)
        _, new_sub = extract_var_func(ret_mod, v_sub.name_hint)
        check_func(new_sub, get_ref_sub())

        # Check the log function.
        log_var, new_log = extract_var_func(ret_mod, v_log.name_hint)
        check_func(new_log, get_ref_log())
def test_print_ir():
    shape = (1, 2, 3)
    tp = relay.TensorType(shape, "float32")
    x = relay.var("x", tp)
    y = relay.add(x, x)
    y = relay.multiply(y, relay.const(2, "float32"))
    func = relay.Function([x], y)

    seq = _transform.Sequential([
        relay.transform.InferType(),
        relay.transform.FoldConstant(),
        relay.transform.PrintIR(),
        relay.transform.DeadCodeElimination()
    ])

    def redirect_output(call):
        """Redirect the C++ logging info."""
        import sys
        import os
        import threading
        stderr_fileno = sys.stderr.fileno()
        stderr_save = os.dup(stderr_fileno)
        stderr_pipe = os.pipe()
        os.dup2(stderr_pipe[1], stderr_fileno)
        os.close(stderr_pipe[1])
        output = ''

        def record():
            nonlocal output
            while True:
                data = os.read(stderr_pipe[0], 1024)
                if not data:
                    break
                output += data.decode("utf-8")

        t = threading.Thread(target=record)
        t.start()
        call()
        os.close(stderr_fileno)
        t.join()
        os.close(stderr_pipe[0])
        os.dup2(stderr_save, stderr_fileno)
        os.close(stderr_save)

        return output

    def run_pass():
        mod = relay.Module({"main": func})
        with relay.build_config(opt_level=3):
            mod = seq(mod)

    out = redirect_output(run_pass)
    assert "Dumping the module IR" in out
    assert "multiply" in out
Пример #6
0
def dcpe(expr, mod=None, grad=False):
    passes = [transform.PartialEvaluate(),
              transform.DeadCodeElimination(inline_once=True)]
    if grad:
        expr = gradient(run_infer_type(expr))
    if mod:
        assert isinstance(expr, Function)
        mod["main"] = expr
        seq = transform.Sequential(passes)
        mod = seq(mod)
        return mod["main"]
    return run_opt_pass(expr, passes)
Пример #7
0
    def test_only_module_pass():
        passes = [module_pass]
        sequential = _transform.Sequential(opt_level=1, passes=passes)
        ret_mod = sequential(mod)
        # Check the subtract function.
        sub_var, new_sub = extract_var_func(ret_mod, v_sub.name_hint)
        check_func(new_sub, sub)

        # Check the abs function is added.
        abs_var, abs_func = get_var_func()
        abs_var, new_abs = extract_var_func(ret_mod, abs_var.name_hint)
        check_func(new_abs, abs_func)
Пример #8
0
 def destroy_ref(x):
     x = run_infer_type(x)
     x = to_cps(x)
     x = run_infer_type(x)
     y = un_cps(x)
     y = run_infer_type(y)
     x = run_opt_pass(
         x,
         transform.Sequential([
             transform.PartialEvaluate(),
             transform.DeadCodeElimination(inline_once=True)
         ]))
     assert Feature.fRefCreate not in detect_feature(x)
Пример #9
0
def quantize_model(model, params, input_dtype, input_shape, qeval='power2'):

    skip_conv_layers = [0]
    with relay.quantize.qconfig(store_lowbit_output=False,
                                skip_conv_layers=skip_conv_layers):
        from tvm.relay.quantize.quantize import _bind_params
        graph = _bind_params(model['main'], params)
        mod = relay.Module.from_expr(graph)
        optimize = _transform.Sequential([
            _transform.SimplifyInference(),
            _transform.FoldConstant(),
            _transform.FoldScaleAxis(),
            _transform.CanonicalizeOps(),
            _transform.FoldConstant()
        ])

        with relay.build_config(opt_level=4):
            mod = optimize(mod)
            mod = relay.quantize.annotate()(mod)

            # find scale
            cache_file = '%s_%s_scales.pkl' % (VIDEO_FILE, MODEL_NAME)
            if os.path.exists(cache_file):
                print("Using cached layer statistics...")
                with open(cache_file, 'rb') as f:
                    scales = pickle.load(f)
            else:
                print("Compute layer statistics...")
                scales = calibrate_on_dataset(mod['main'], params, input_dtype,
                                              input_shape)
                with open(cache_file, 'wb') as f:
                    pickle.dump(scales, f)

            if qeval == 'power2':
                scales = list(
                    map(
                        lambda scale: 2**np.math.ceil(np.math.log(scale, 2))
                        if scale > 0 else 1.0, scales))
                weight_scales = 'power2'
            elif qeval == 'max':
                weight_scales = 'max'
            else:
                raise ValueError("Invalid quantiziation eval: " + qeval)

            mod['main'] = relay.quantize.calibrate(mod['main'],
                                                   weight_scales=weight_scales,
                                                   scales=scales)
            mod = relay.quantize.realize()(mod)
            mod = relay.transform.FoldConstant()(mod)

    return mod
Пример #10
0
def test_checkpoint_alpha_equal_tuple():
    xs = [
        relay.var("x{}".format(i), relay.TensorType((1, ), "float32"))
        for i in range(4)
    ]
    f = relay.Function(
        xs,
        relay.annotation.checkpoint(
            relay.Tuple([relay.add(xs[0], xs[1]),
                         relay.add(xs[2], xs[3])])))
    df = transform.gradient(run_infer_type(f))

    # run PE and DCE
    with transform.PassContext(opt_level=3):
        passes = [
            transform.PartialEvaluate(),
            transform.DeadCodeElimination(inline_once=True)
        ]
        mod = transform.Sequential(passes)(tvm.IRModule.from_expr(df))
        df = mod["main"]

    df_parsed = relay.parser.fromtext("""
        v0.0.4
        fn (%x: Tensor[(1), float32], %y: Tensor[(1), float32],
            %z: Tensor[(1), float32], %w: Tensor[(1), float32])
            -> ((Tensor[(1), float32], Tensor[(1), float32]),
                (Tensor[(1), float32], Tensor[(1), float32],
                 Tensor[(1), float32], Tensor[(1), float32])) {
        let %x1: Tensor[(1), float32] = add(%x, %y) /* ty=Tensor[(1), float32] */;
        let %x2: Tensor[(1), float32] = add(%z, %w) /* ty=Tensor[(1), float32] */;
        let %x3: Tensor[(1), float32] = zeros_like(%x2) /* ty=Tensor[(1), float32] */;
        let %x4: Tensor[(1), float32] = ones_like(%x1) /* ty=Tensor[(1), float32] */;
        %0 = (%x1, %x2);
        %1 = zeros_like(%x) /* ty=Tensor[(1), float32] */;
        %2 = collapse_sum_like(%x4, %x) /* ty=Tensor[(1), float32] */;
        %3 = add(%1, %2) /* ty=Tensor[(1), float32] */;
        %4 = zeros_like(%y) /* ty=Tensor[(1), float32] */;
        %5 = collapse_sum_like(%x4, %y) /* ty=Tensor[(1), float32] */;
        %6 = add(%4, %5) /* ty=Tensor[(1), float32] */;
        %7 = zeros_like(%z) /* ty=Tensor[(1), float32] */;
        %8 = collapse_sum_like(%x3, %z) /* ty=Tensor[(1), float32] */;
        %9 = add(%7, %8) /* ty=Tensor[(1), float32] */;
        %10 = zeros_like(%w) /* ty=Tensor[(1), float32] */;
        %11 = collapse_sum_like(%x3, %w) /* ty=Tensor[(1), float32] */;
        %12 = add(%10, %11) /* ty=Tensor[(1), float32] */;
        %13 = (%3, %6, %9, %12);
        (%0, %13)
        }
        """)

    relay.analysis.assert_alpha_equal(df, df_parsed)
Пример #11
0
def dcpe(expr, mod=None, grad=False):
    passes = [
        transform.PartialEvaluate(),
        transform.DeadCodeElimination(inline_once=True)
    ]
    if grad:
        expr = gradient(expr)
    if mod:
        assert isinstance(expr, Function)
        mod[mod.entry_func] = expr
        seq = transform.Sequential(passes)
        mod = seq(mod)
        return mod[mod.entry_func]
    return transform.OptimizeOnExpr(expr, passes)
Пример #12
0
def test_eta_expand_basic():
    x = relay.var('x', 'int32')
    orig = relay.Function([x], x)
    mod = _module.Module.from_expr(orig)
    seq = _transform.Sequential([_transform.EtaExpand()])
    with _transform.PassContext(opt_level=3):
        mod = seq(mod)

    got = mod[mod.entry_func.name_hint]

    y = relay.var('y', 'int32')
    expected = relay.Function([y], orig(y))

    got = relay.ir_pass.infer_type(got, mod)
    expected = relay.ir_pass.infer_type(expected, mod)
    assert (relay.ir_pass.alpha_equal(got, expected))
def test_eta_expand_basic():
    x = relay.var('x', 'int32')
    orig = relay.Function([x], x)
    mod = _module.Module.from_expr(orig)
    seq = _transform.Sequential([_transform.EtaExpand()])
    with _transform.PassContext(opt_level=3):
        mod = seq(mod)

    got = mod["main"]

    y = relay.var('y', 'int32')
    expected = relay.Function([y], orig(y))
    gv = relay.GlobalVar("gv")
    mod[gv] = expected
    mod = _transform.InferType()(mod)
    expected = mod["gv"]
    assert (relay.analysis.alpha_equal(got, expected))
def test_fold_batch_norm():
    def expected():
        data = relay.var("data", relay.TensorType((1, 3, 224, 224), "float32"))
        weight = relay.const(np.zeros((16, 3, 3, 3)))
        bias = relay.const(np.zeros((16, 1, 1)))
        conv = relay.nn.conv2d(data=data,
                               weight=weight,
                               kernel_size=(3, 3),
                               channels=16,
                               padding=(1, 1))
        add = relay.add(conv, bias)
        return relay.Function(relay.analysis.free_vars(add), add)

    remove_bn_pass = transform.Sequential([
        relay.transform.InferType(),
        relay.transform.SimplifyInference(),
        relay.transform.FoldConstant(),
        relay.transform.FoldScaleAxis(),
    ])

    data = relay.var("data", relay.TensorType((1, 3, 224, 224), "float32"))
    weight = relay.var("weight")
    bn_gamma = relay.var("bn_gamma")
    bn_beta = relay.var("bn_beta")
    bn_mmean = relay.var("bn_mean")
    bn_mvar = relay.var("bn_var")

    conv = relay.nn.conv2d(data=data,
                           weight=weight,
                           kernel_size=(3, 3),
                           channels=16,
                           padding=(1, 1))
    bn_output = relay.nn.batch_norm(conv, bn_gamma, bn_beta, bn_mmean, bn_mvar)

    def initializer(_, param):
        param = np.zeros(param.shape)

    mod, params = create_workload(bn_output[0], initializer)
    mod["main"] = bind_params_by_name(mod["main"], params)

    with relay.build_config(opt_level=3):
        mod = remove_bn_pass(mod)

    expect = run_infer_type(expected())
    assert relay.analysis.graph_equal(mod["main"], expect)
Пример #15
0
    def test_multiple_passes():
        # Reset the current module since mod has been polluted by the previous
        # function pass.
        mod = tvm.IRModule({v_sub: sub, v_log: log})
        passes = [module_pass, function_pass]
        sequential = _transform.Sequential(opt_level=1, passes=passes)
        required = ["mod_transform", "func_transform"]
        with relay.build_config(required_pass=required):
            ret_mod = sequential(mod)

        # Check the abs function is added.
        abs_var, abs_func = get_var_func()
        abs_var, new_abs = extract_var_func(ret_mod, abs_var.name_hint)
        check_func(new_abs, get_ref_abs())

        # Check the subtract function is modified correctly.
        _, new_sub = extract_var_func(ret_mod, v_sub.name_hint)
        check_func(new_sub, get_ref_sub())

        # Check the log function is modified correctly.
        _, new_log = extract_var_func(ret_mod, v_log.name_hint)
        check_func(new_log, get_ref_log())

        # Execute the updated subtract function.
        x_nd = get_rand(shape, dtype)
        y_nd = get_rand(shape, dtype)
        ref_res = np.subtract(x_nd.asnumpy() * 2, y_nd.asnumpy() * 2)
        for target, ctx in ctx_list():
            exe1 = relay.create_executor("graph", ctx=ctx, target=target)
            exe2 = relay.create_executor("debug", ctx=ctx, target=target)
            res1 = exe1.evaluate(new_sub)(x_nd, y_nd)
            tvm.testing.assert_allclose(res1.asnumpy(), ref_res, rtol=1e-5)
            res2 = exe2.evaluate(new_sub)(x_nd, y_nd)
            tvm.testing.assert_allclose(res2.asnumpy(), ref_res, rtol=1e-5)

        # Execute the updated abs function.
        x_nd = get_rand((5, 10), dtype)
        ref_res = np.abs(x_nd.asnumpy() * 2)
        for target, ctx in ctx_list():
            exe1 = relay.create_executor("graph", ctx=ctx, target=target)
            exe2 = relay.create_executor("debug", ctx=ctx, target=target)
            res1 = exe1.evaluate(new_abs)(x_nd)
            tvm.testing.assert_allclose(res1.asnumpy(), ref_res, rtol=1e-5)
            res2 = exe2.evaluate(new_abs)(x_nd)
            tvm.testing.assert_allclose(res2.asnumpy(), ref_res, rtol=1e-5)
Пример #16
0
 def check(shape):
     data = relay.var("data", shape=shape, dtype="int8")
     conv_weight = relay.var("weight")
     bias1 = relay.var("bias1", shape=(16, 1, 1), dtype="int32")
     bias2 = relay.var("bias2", shape=(16, 1, 1), dtype="int32")
     y = before(data, conv_weight, bias1, bias2)
     mod = _module.Module.from_expr(y)
     seq = _transform.Sequential([
         _transform.InferType(),
         _transform.CanonicalizeCast(),
         _transform.InferType()
     ])
     with _transform.PassContext(opt_level=3):
         mod = seq(mod)
     y = mod[mod.entry_func.name_hint]
     y_expected = expected(data, conv_weight, bias1, bias2)
     y_expected = relay.ir_pass.infer_type(y_expected)
     assert relay.ir_pass.alpha_equal(y, y_expected)
 def check(shape):
     data = relay.var("data", shape=shape, dtype="int8")
     conv_weight = relay.var("weight")
     bias1 = relay.var("bias1", shape=(16, 1, 1), dtype="int32")
     bias2 = relay.var("bias2", shape=(16, 1, 1), dtype="int32")
     y = before(data, conv_weight, bias1, bias2)
     mod = tvm.IRModule.from_expr(y)
     seq = _transform.Sequential([_transform.InferType(), _transform.CanonicalizeCast(),
                                  _transform.InferType()])
     with _transform.PassContext(opt_level=3):
         mod = seq(mod)
     y = mod["main"]
     y_expected = expected(data, conv_weight, bias1, bias2)
     gv = relay.GlobalVar("expected")
     mod[gv] = y_expected
     mod = _transform.InferType()(mod)
     y_expected = mod["expected"]
     assert relay.analysis.alpha_equal(y, y_expected)
def test_after_partial_eval():
    """Test transformation following reverse mode ad and PartialEval"""
    mod = tvm.IRModule()

    shape = (10, 10)
    dtype = 'float32'
    t = relay.TensorType(shape, dtype)

    x = relay.var("x", t)
    y = relay.var("y", t)

    func = relay.Function([x, y], (x * y) * relay.const(np.ones(shape, dtype)))
    func = run_infer_type(func)
    back_func = transform.gradient(func)
    back_func = run_infer_type(back_func)

    mod["main"] = back_func
    back_func = mod["main"]

    seq = transform.Sequential([
        transform.PartialEvaluate(),
        transform.LazyGradientInit(),
        transform.DeadCodeElimination()
    ])

    mod = seq(mod)

    assert mod["main"].checked_type == relay.FuncType(
        [t, t], relay.TupleType([t, relay.TupleType([t, t])]))

    ex = create_executor(mod=mod)
    x = rand(dtype, *shape)
    y = rand(dtype, *shape)
    (forward), (
        grad_x,
        grad_y,
    ) = ex.evaluate(back_func)(x, y)
    assert_allclose(forward.asnumpy(), x.asnumpy() * y.asnumpy())
    assert_allclose(grad_x.asnumpy(), y.asnumpy())
    assert_allclose(grad_y.asnumpy(), x.asnumpy())
Пример #19
0
def test_sequential_with_scoping():
    shape = (1, 2, 3)
    c_data = np.array(shape).astype("float32")
    tp = relay.TensorType(shape, "float32")

    def before():
        c = relay.const(c_data)
        x = relay.var("x", tp)
        y = relay.add(c, c)
        y = relay.multiply(y, relay.const(2, "float32"))
        y = relay.add(x, y)
        z = relay.add(y, c)
        z1 = relay.add(y, c)
        z2 = relay.add(z, z1)
        return relay.Function([x], z2)

    def expected():
        x = relay.var("x", tp)
        c_folded = (c_data + c_data) * 2
        y = relay.add(x, relay.const(c_folded))
        z = relay.add(y, relay.const(c_data))
        z1 = relay.add(z, z)
        return relay.Function([x], z1)

    seq = _transform.Sequential([
        relay.transform.InferType(),
        relay.transform.FoldConstant(),
        relay.transform.EliminateCommonSubexpr(),
        relay.transform.AlterOpLayout()
    ])

    mod = tvm.IRModule({"main": before()})
    with relay.build_config(opt_level=3):
        with tvm.target.create("llvm"):
            mod = seq(mod)

    zz = mod["main"]
    zexpected = run_infer_type(expected())
    assert analysis.alpha_equal(zz, zexpected)
Пример #20
0
def test_print_debug_callback():
    global __TRACE_COUNTER__
    shape = (1, 2, 3)
    tp = relay.TensorType(shape, "float32")
    x = relay.var("x", tp)
    y = relay.add(x, x)
    y = relay.multiply(y, relay.const(2, "float32"))
    func = relay.Function([x], y)

    seq = _transform.Sequential([
        relay.transform.InferType(),
        relay.transform.FoldConstant(),
        relay.transform.DeadCodeElimination()
    ])

    assert __TRACE_COUNTER__ == 0
    mod = tvm.IRModule({"main": func})

    with relay.build_config(opt_level=3, trace=_tracer):
        mod = seq(mod)

    assert __TRACE_COUNTER__ == 4
Пример #21
0
def test_print_ir(capfd):
    shape = (1, 2, 3)
    tp = relay.TensorType(shape, "float32")
    x = relay.var("x", tp)
    y = relay.add(x, x)
    y = relay.multiply(y, relay.const(2, "float32"))
    func = relay.Function([x], y)

    seq = _transform.Sequential([
        relay.transform.InferType(),
        relay.transform.FoldConstant(),
        relay.transform.PrintIR(),
        relay.transform.DeadCodeElimination()
    ])

    mod = tvm.IRModule({"main": func})
    with relay.build_config(opt_level=3):
        mod = seq(mod)

    out = capfd.readouterr().err

    assert "Dumping the module IR" in out
    assert "multiply" in out
Пример #22
0
    def partition():
        data = relay.var("data", relay.TensorType((1, 3, 224, 224), "float32"))
        weight = relay.var("weight", relay.TensorType((16, 3, 3, 3),
                                                      "float32"))
        bn_gamma = relay.var("bn_gamma", relay.TensorType((16, ), "float32"))
        bn_beta = relay.var("bn_beta", relay.TensorType((16, ), "float32"))
        bn_mmean = relay.var("bn_mean", relay.TensorType((16, ), "float32"))
        bn_mvar = relay.var("bn_var", relay.TensorType((16, ), "float32"))

        conv = relay.nn.conv2d(data=data,
                               weight=weight,
                               kernel_size=(3, 3),
                               channels=16,
                               padding=(1, 1))
        bn_output = relay.nn.batch_norm(conv, bn_gamma, bn_beta, bn_mmean,
                                        bn_mvar)

        func = relay.Function(
            [data, weight, bn_gamma, bn_beta, bn_mmean, bn_mvar],
            bn_output.astuple())
        mod = tvm.IRModule()
        mod["main"] = func
        op_list = ["nn.batch_norm", "nn.conv2d"]
        mod = WhiteListAnnotator(op_list, "test_compiler")(mod)

        opt_pass = transform.Sequential([
            transform.InferType(),
            transform.PartitionGraph(),
            transform.SimplifyInference(),
            transform.FoldConstant(),
            transform.AlterOpLayout(),
        ])

        with relay.build_config(opt_level=3):
            mod = opt_pass(mod)

        return mod
Пример #23
0
 def test_no_pass():
     passes = []
     sequential = _transform.Sequential(opt_level=1, passes=passes)
     ret_mod = sequential(mod)
     mod_func = ret_mod[v_sub]
     check_func(sub, mod_func)
Пример #24
0
    """Workaround for type checker and mutually recursive functions."""
    for gv in funcs:
        func = funcs[gv]
        body = _placeholder_body(func.ret_type)
        mod[gv] = relay.Function(func.params, body, func.ret_type)

    for gv in funcs:
        mod[gv] = funcs[gv]


pass_set = transform.Sequential(
    passes=[
        transform.SimplifyInference(),
        transform.CanonicalizeOps(),
        transform.CanonicalizeCast(),
        transform.FuseOps(3),
        # transform.CombineParallelConv2d(),
        transform.AlterOpLayout(),
        # transform.RewriteAnnotatedOps(???),
    ],
    opt_level=0)


def optimize(mod):
    """Optimize all the functions in a module.

    Modules are the only mutable piece of Relay.  We write an
    optimization pass over the module which destructively updates each
    function while optimizing.
    """
    return pass_set(mod)