def __init__(self): self.al_object = alchemy() self.tw_object = twitter() self.meta_data = np.empty([25258,6],dtype='|S1000') with open('metadata.csv', 'rb') as csvfile: spamreader = csv.reader(csvfile, delimiter=',') i = 0 for row in spamreader: self.meta_data[i, :] = row i += 1 self.meta_data_concepts = [] iter = 10 #self.meta_data[:,0].size for i in range(0, iter): s = " "; seq = (self.meta_data[i][0], self.meta_data[i][1], self.meta_data[i][2], self.meta_data[i][3], self.meta_data[i][4], self.meta_data[i][5]) self.meta_data_concepts.append(self.al_object.find_keywords(s.join(seq)))
}, { 'title':u'World in White', 'synopsis':u'Surrounded by dark forces who suppress and ridicule him, the Hero slowly blossoms into a mature figure who ultimately gets riches, a kingdom, and the perfect mate.', 'imgurl':u'http://uploads.neatorama.com/images/posts/95/58/58095/1360112719-0.jpg', 'trailerurl':u'https://www.youtube.com/watch?v=a2MnKebNlRo', 'genre':u'classic,thriller' } ] }, ] meta = { 'location': u'London, UK', 'weather': weather.getWeather(2882, 'London'), 'trends': twitter().get_trends() } def get_lists(recommendation): ts = int(time.time()) datapoint = np.array([weekday(ts), hour_of_day(ts), 1]) #print datapoint #datapoint = np.array([6,10,1]) list_of_rec = recommendation.get_kmeans_recommendations(datapoint) return jsonify({'lists': mapping.programs_to_data(list_of_rec, recommendation.get_meta_data())}) def get_trending_concepts(recommendation): list_of_rec = recommendation.get_trend_recommendations() return jsonify({'lists': mapping.programs_to_data(list_of_rec, recommendation.get_meta_data())}) def metadata():