Пример #1
0
def preprocess_expression(expression, complex_mode=False,
                          do_apply_restrictions=False):
    """Imitates the compute_form_data processing pipeline.

    :arg complex_mode: Are we in complex UFL mode?
    :arg do_apply_restrictions: Propogate restrictions to terminals?

    Useful, for example, to preprocess non-scalar expressions, which
    are not and cannot be forms.
    """
    if complex_mode:
        expression = do_comparison_check(expression)
    else:
        expression = remove_complex_nodes(expression)
    expression = apply_algebra_lowering(expression)
    expression = apply_derivatives(expression)
    expression = apply_function_pullbacks(expression)
    expression = apply_geometry_lowering(expression, preserve_geometry_types)
    expression = apply_derivatives(expression)
    expression = apply_geometry_lowering(expression, preserve_geometry_types)
    expression = apply_derivatives(expression)
    if not complex_mode:
        expression = remove_complex_nodes(expression)
    if do_apply_restrictions:
        expression = apply_restrictions(expression)
    return expression
Пример #2
0
def compute_integrand_scaling_factor(integral):
    """Change integrand geometry to the right representations."""

    domain = integral.ufl_domain()
    integral_type = integral.integral_type()
    # co = CellOrientation(domain)
    weight = QuadratureWeight(domain)
    tdim = domain.topological_dimension()
    # gdim = domain.geometric_dimension()

    # Polynomial degree of integrand scaling
    degree = 0
    if integral_type == "cell":
        detJ = JacobianDeterminant(domain)
        degree = estimate_total_polynomial_degree(
            apply_geometry_lowering(detJ))
        # Despite the abs, |detJ| is polynomial except for
        # self-intersecting cells, where we have other problems.
        scale = abs(detJ) * weight

    elif integral_type.startswith("exterior_facet"):
        if tdim > 1:
            # Scaling integral by facet jacobian determinant and
            # quadrature weight
            detFJ = FacetJacobianDeterminant(domain)
            degree = estimate_total_polynomial_degree(
                apply_geometry_lowering(detFJ))
            scale = detFJ * weight
        else:
            # No need to scale 'integral' over a vertex
            scale = 1

    elif integral_type.startswith("interior_facet"):
        if tdim > 1:
            # Scaling integral by facet jacobian determinant from one
            # side and quadrature weight
            detFJ = FacetJacobianDeterminant(domain)
            degree = estimate_total_polynomial_degree(
                apply_geometry_lowering(detFJ))
            scale = detFJ('+') * weight
        else:
            # No need to scale 'integral' over a vertex
            scale = 1

    elif integral_type in custom_integral_types:
        # Scaling with custom weight, which includes eventual volume
        # scaling
        scale = weight

    elif integral_type in point_integral_types:
        # No need to scale 'integral' over a point
        scale = 1

    else:
        error("Unknown integral type {}, don't know how to scale.".format(
            integral_type))

    return scale, degree
def compute_integrand_scaling_factor(integral):
    """Change integrand geometry to the right representations."""

    domain = integral.ufl_domain()
    integral_type = integral.integral_type()
    # co = CellOrientation(domain)
    weight = QuadratureWeight(domain)
    tdim = domain.topological_dimension()
    # gdim = domain.geometric_dimension()

    # Polynomial degree of integrand scaling
    degree = 0
    if integral_type == "cell":
        detJ = JacobianDeterminant(domain)
        degree = estimate_total_polynomial_degree(apply_geometry_lowering(detJ))
        # Despite the abs, |detJ| is polynomial except for
        # self-intersecting cells, where we have other problems.
        scale = abs(detJ) * weight

    elif integral_type.startswith("exterior_facet"):
        if tdim > 1:
            # Scaling integral by facet jacobian determinant and
            # quadrature weight
            detFJ = FacetJacobianDeterminant(domain)
            degree = estimate_total_polynomial_degree(apply_geometry_lowering(detFJ))
            scale = detFJ * weight
        else:
            # No need to scale 'integral' over a vertex
            scale = 1

    elif integral_type.startswith("interior_facet"):
        if tdim > 1:
            # Scaling integral by facet jacobian determinant from one
            # side and quadrature weight
            detFJ = FacetJacobianDeterminant(domain)
            degree = estimate_total_polynomial_degree(apply_geometry_lowering(detFJ))
            scale = detFJ('+') * weight
        else:
            # No need to scale 'integral' over a vertex
            scale = 1

    elif integral_type in custom_integral_types:
        # Scaling with custom weight, which includes eventual volume
        # scaling
        scale = weight

    elif integral_type in point_integral_types:
        # No need to scale 'integral' over a point
        scale = 1

    else:
        error("Unknown integral type {}, don't know how to scale.".format(integral_type))

    return scale, degree
Пример #4
0
def preprocess_expression(expression):
    """Imitates the compute_form_data processing pipeline.

    Useful, for example, to preprocess non-scalar expressions, which
    are not and cannot be forms.
    """
    expression = apply_algebra_lowering(expression)
    expression = apply_derivatives(expression)
    expression = apply_function_pullbacks(expression)
    expression = apply_geometry_lowering(expression, preserve_geometry_types)
    expression = apply_derivatives(expression)
    expression = apply_geometry_lowering(expression, preserve_geometry_types)
    expression = apply_derivatives(expression)
    return expression
Пример #5
0
def preprocess_expression(expression):
    """Imitates the compute_form_data processing pipeline.

    Useful, for example, to preprocess non-scalar expressions, which
    are not and cannot be forms.
    """
    expression = apply_algebra_lowering(expression)
    expression = apply_derivatives(expression)
    expression = apply_function_pullbacks(expression)
    expression = apply_geometry_lowering(expression, preserve_geometry_types)
    expression = apply_derivatives(expression)
    expression = apply_geometry_lowering(expression, preserve_geometry_types)
    expression = apply_derivatives(expression)
    return expression
Пример #6
0
def test_index_simplification_reference_grad(self):
    mesh = Mesh(VectorElement("P", quadrilateral, 1))
    i, = indices(1)
    A = as_tensor(Indexed(Jacobian(mesh), MultiIndex((i, i))), (i,))
    expr = apply_derivatives(apply_geometry_lowering(
        apply_algebra_lowering(A[0])))
    assert expr == ReferenceGrad(SpatialCoordinate(mesh))[0, 0]
    assert expr.ufl_free_indices == ()
    assert expr.ufl_shape == ()
Пример #7
0
def change_integrand_geometry_representation(integrand, scale, integral_type):
    """Change integrand geometry to the right representations."""

    integrand = apply_function_pullbacks(integrand)

    integrand = change_to_reference_grad(integrand)

    integrand = integrand * scale

    if integral_type == "quadrature":
        physical_coordinates_known = True
    else:
        physical_coordinates_known = False
    integrand = apply_geometry_lowering(integrand, physical_coordinates_known)

    return integrand
Пример #8
0
def compute_form_data(
    form,
    # Default arguments configured to behave the way old FFC expects it:
    do_apply_function_pullbacks=False,
    do_apply_integral_scaling=False,
    do_apply_geometry_lowering=False,
    preserve_geometry_types=(),
    do_apply_default_restrictions=True,
    do_apply_restrictions=True,
    do_estimate_degrees=True,
):

    # TODO: Move this to the constructor instead
    self = FormData()

    # --- Store untouched form for reference.
    # The user of FormData may get original arguments,
    # original coefficients, and form signature from this object.
    # But be aware that the set of original coefficients are not
    # the same as the ones used in the final UFC form.
    # See 'reduced_coefficients' below.
    self.original_form = form

    # --- Pass form integrands through some symbolic manipulation

    # Note: Default behaviour here will process form the way that is
    # currently expected by vanilla FFC

    # Lower abstractions for tensor-algebra types into index notation,
    # reducing the number of operators later algorithms and form
    # compilers need to handle
    form = apply_algebra_lowering(form)

    # Apply differentiation before function pullbacks, because for
    # example coefficient derivatives are more complicated to derive
    # after coefficients are rewritten, and in particular for
    # user-defined coefficient relations it just gets too messy
    form = apply_derivatives(form)

    # --- Group form integrals
    # TODO: Refactor this, it's rather opaque what this does
    # TODO: Is self.original_form.ufl_domains() right here?
    #       It will matter when we start including 'num_domains' in ufc form.
    form = group_form_integrals(form, self.original_form.ufl_domains())

    # Estimate polynomial degree of integrands now, before applying
    # any pullbacks and geometric lowering.  Otherwise quad degrees
    # blow up horrifically.
    if do_estimate_degrees:
        form = attach_estimated_degrees(form)

    if do_apply_function_pullbacks:
        # Rewrite coefficients and arguments in terms of their
        # reference cell values with Piola transforms and symmetry
        # transforms injected where needed.
        # Decision: Not supporting grad(dolfin.Expression) without a
        #           Domain.  Current dolfin works if Expression has a
        #           cell but this should be changed to a mesh.
        form = apply_function_pullbacks(form)

    # Scale integrals to reference cell frames
    if do_apply_integral_scaling:
        form = apply_integral_scaling(form)

    # Apply default restriction to fully continuous terminals
    if do_apply_default_restrictions:
        form = apply_default_restrictions(form)

    # Lower abstractions for geometric quantities into a smaller set
    # of quantities, allowing the form compiler to deal with a smaller
    # set of types and treating geometric quantities like any other
    # expressions w.r.t. loop-invariant code motion etc.
    if do_apply_geometry_lowering:
        form = apply_geometry_lowering(form, preserve_geometry_types)

    # Apply differentiation again, because the algorithms above can
    # generate new derivatives or rewrite expressions inside
    # derivatives
    if do_apply_function_pullbacks or do_apply_geometry_lowering:
        form = apply_derivatives(form)

        # Neverending story: apply_derivatives introduces new Jinvs,
        # which needs more geometry lowering
        if do_apply_geometry_lowering:
            form = apply_geometry_lowering(form, preserve_geometry_types)
            # Lower derivatives that may have appeared
            form = apply_derivatives(form)

    # Propagate restrictions to terminals
    if do_apply_restrictions:
        form = apply_restrictions(form)

    # --- Group integrals into IntegralData objects
    # Most of the heavy lifting is done above in group_form_integrals.
    self.integral_data = build_integral_data(form.integrals())

    # --- Create replacements for arguments and coefficients

    # Figure out which form coefficients each integral should enable
    for itg_data in self.integral_data:
        itg_coeffs = set()
        # Get all coefficients in integrand
        for itg in itg_data.integrals:
            itg_coeffs.update(extract_coefficients(itg.integrand()))
        # Store with IntegralData object
        itg_data.integral_coefficients = itg_coeffs

    # Figure out which coefficients from the original form are
    # actually used in any integral (Differentiation may reduce the
    # set of coefficients w.r.t. the original form)
    reduced_coefficients_set = set()
    for itg_data in self.integral_data:
        reduced_coefficients_set.update(itg_data.integral_coefficients)
    self.reduced_coefficients = sorted(reduced_coefficients_set,
                                       key=lambda c: c.count())
    self.num_coefficients = len(self.reduced_coefficients)
    self.original_coefficient_positions = [
        i for i, c in enumerate(self.original_form.coefficients())
        if c in self.reduced_coefficients
    ]

    # Store back into integral data which form coefficients are used
    # by each integral
    for itg_data in self.integral_data:
        itg_data.enabled_coefficients = [
            bool(coeff in itg_data.integral_coefficients)
            for coeff in self.reduced_coefficients
        ]

    # --- Collect some trivial data

    # Get rank of form from argument list (assuming not a mixed arity form)
    self.rank = len(self.original_form.arguments())

    # Extract common geometric dimension (topological is not common!)
    self.geometric_dimension = self.original_form.integrals()[0].ufl_domain(
    ).geometric_dimension()

    # --- Build mapping from old incomplete element objects to new
    # well defined elements.  This is to support the Expression
    # construct in dolfin which subclasses Coefficient but doesn't
    # provide an element, and the Constant construct that doesn't
    # provide the domain that a Coefficient is supposed to have. A
    # future design iteration in UFL/UFC/FFC/DOLFIN may allow removal
    # of this mapping with the introduction of UFL types for
    # Expression-like functions that can be evaluated in quadrature
    # points.
    self.element_replace_map = _compute_element_mapping(self.original_form)

    # Mappings from elements and coefficients that reside in form to
    # objects with canonical numbering as well as completed cells and
    # elements
    renumbered_coefficients, function_replace_map = \
        _build_coefficient_replace_map(self.reduced_coefficients,
                                       self.element_replace_map)
    self.function_replace_map = function_replace_map

    # --- Store various lists of elements and sub elements (adds
    #     members to self)
    _compute_form_data_elements(self, self.original_form.arguments(),
                                renumbered_coefficients,
                                self.original_form.ufl_domains())

    # --- Store number of domains for integral types
    # TODO: Group this by domain first. For now keep a backwards
    # compatible data structure.
    self.max_subdomain_ids = _compute_max_subdomain_ids(self.integral_data)

    # --- Checks
    _check_elements(self)
    _check_facet_geometry(self.integral_data)

    # TODO: This is a very expensive check... Replace with something
    # faster!
    preprocessed_form = reconstruct_form_from_integral_data(self.integral_data)
    check_form_arity(
        preprocessed_form,
        self.original_form.arguments())  # Currently testing how fast this is

    # TODO: This member is used by unit tests, change the tests to
    # remove this!
    self.preprocessed_form = preprocessed_form

    return self
Пример #9
0
def compile_ufl_kernel(expression, to_pts, to_element, fs):
    import collections
    from ufl.algorithms.apply_function_pullbacks import apply_function_pullbacks
    from ufl.algorithms.apply_algebra_lowering import apply_algebra_lowering
    from ufl.algorithms.apply_derivatives import apply_derivatives
    from ufl.algorithms.apply_geometry_lowering import apply_geometry_lowering
    from ufl.algorithms import extract_arguments, extract_coefficients
    from gem import gem, impero_utils
    from tsfc import fem, ufl_utils
    from tsfc.coffee import generate as generate_coffee
    from tsfc.kernel_interface import (KernelBuilderBase,
                                       needs_cell_orientations,
                                       cell_orientations_coffee_arg)

    # Imitate the compute_form_data processing pipeline
    #
    # Unfortunately, we cannot call compute_form_data here, since
    # we only have an expression, not a form
    expression = apply_algebra_lowering(expression)
    expression = apply_derivatives(expression)
    expression = apply_function_pullbacks(expression)
    expression = apply_geometry_lowering(expression)
    expression = apply_derivatives(expression)
    expression = apply_geometry_lowering(expression)
    expression = apply_derivatives(expression)

    # Replace coordinates (if any)
    if expression.ufl_domain():
        assert fs.mesh() == expression.ufl_domain()
        expression = ufl_utils.replace_coordinates(expression, fs.mesh().coordinates)

    if extract_arguments(expression):
        return ValueError("Cannot interpolate UFL expression with Arguments!")

    builder = KernelBuilderBase()
    args = []

    coefficients = extract_coefficients(expression)
    for i, coefficient in enumerate(coefficients):
        args.append(builder.coefficient(coefficient, "w_%d" % i))

    point_index = gem.Index(name='p')
    ir = fem.process('cell', fs.mesh().ufl_cell(), to_pts, None,
                     point_index, (), expression,
                     builder.coefficient_mapper,
                     collections.defaultdict(gem.Index))
    assert len(ir) == 1

    # Deal with non-scalar expressions
    tensor_indices = ()
    if fs.shape:
        tensor_indices = tuple(gem.Index() for s in fs.shape)
        ir = [gem.Indexed(ir[0], tensor_indices)]

    # Build kernel body
    return_var = gem.Variable('A', (len(to_pts),) + fs.shape)
    return_expr = gem.Indexed(return_var, (point_index,) + tensor_indices)
    impero_c = impero_utils.compile_gem([return_expr], ir, [point_index])
    body = generate_coffee(impero_c, index_names={point_index: 'p'})

    oriented = needs_cell_orientations(ir)
    if oriented:
        args.insert(0, cell_orientations_coffee_arg)

    # Build kernel
    args.insert(0, ast.Decl("double", ast.Symbol('A', rank=(len(to_pts),) + fs.shape)))
    kernel_code = builder.construct_kernel("expression_kernel", args, body)

    return op2.Kernel(kernel_code, kernel_code.name), oriented, coefficients
Пример #10
0
def compile_ufl_kernel(expression, to_pts, to_element, fs):
    import collections
    from ufl.algorithms.apply_function_pullbacks import apply_function_pullbacks
    from ufl.algorithms.apply_algebra_lowering import apply_algebra_lowering
    from ufl.algorithms.apply_derivatives import apply_derivatives
    from ufl.algorithms.apply_geometry_lowering import apply_geometry_lowering
    from ufl.algorithms import extract_arguments, extract_coefficients
    from gem import gem, impero_utils
    from tsfc import fem, ufl_utils
    from tsfc.coffee import generate as generate_coffee
    from tsfc.kernel_interface import (KernelBuilderBase,
                                       needs_cell_orientations,
                                       cell_orientations_coffee_arg)

    # Imitate the compute_form_data processing pipeline
    #
    # Unfortunately, we cannot call compute_form_data here, since
    # we only have an expression, not a form
    expression = apply_algebra_lowering(expression)
    expression = apply_derivatives(expression)
    expression = apply_function_pullbacks(expression)
    expression = apply_geometry_lowering(expression)
    expression = apply_derivatives(expression)
    expression = apply_geometry_lowering(expression)
    expression = apply_derivatives(expression)

    # Replace coordinates (if any)
    if expression.ufl_domain():
        assert fs.mesh() == expression.ufl_domain()
        expression = ufl_utils.replace_coordinates(expression, fs.mesh().coordinates)

    if extract_arguments(expression):
        return ValueError("Cannot interpolate UFL expression with Arguments!")

    builder = KernelBuilderBase()
    args = []

    coefficients = extract_coefficients(expression)
    for i, coefficient in enumerate(coefficients):
        args.append(builder.coefficient(coefficient, "w_%d" % i))

    point_index = gem.Index(name='p')
    ir = fem.compile_ufl(expression,
                         cell=fs.mesh().ufl_cell(),
                         points=to_pts,
                         point_index=point_index,
                         coefficient_mapper=builder.coefficient_mapper)
    assert len(ir) == 1

    # Deal with non-scalar expressions
    tensor_indices = ()
    if fs.shape:
        tensor_indices = tuple(gem.Index() for s in fs.shape)
        ir = [gem.Indexed(ir[0], tensor_indices)]

    # Build kernel body
    return_var = gem.Variable('A', (len(to_pts),) + fs.shape)
    return_expr = gem.Indexed(return_var, (point_index,) + tensor_indices)
    impero_c = impero_utils.compile_gem([return_expr], ir, [point_index])
    body = generate_coffee(impero_c, index_names={point_index: 'p'})

    oriented = needs_cell_orientations(ir)
    if oriented:
        args.insert(0, cell_orientations_coffee_arg)

    # Build kernel
    args.insert(0, ast.Decl("double", ast.Symbol('A', rank=(len(to_pts),) + fs.shape)))
    kernel_code = builder.construct_kernel("expression_kernel", args, body)

    return op2.Kernel(kernel_code, kernel_code.name), oriented, coefficients
Пример #11
0
def compute_form_data(form,
                      # Default arguments configured to behave the way old FFC expects it:
                      do_apply_function_pullbacks=False,
                      do_apply_integral_scaling=False,
                      do_apply_geometry_lowering=False,
                      preserve_geometry_types=(),
                      do_apply_default_restrictions=True,
                      do_apply_restrictions=True,
                      do_estimate_degrees=True,
                      complex_mode=False,
                      ):

    # TODO: Move this to the constructor instead
    self = FormData()

    # --- Store untouched form for reference.
    # The user of FormData may get original arguments,
    # original coefficients, and form signature from this object.
    # But be aware that the set of original coefficients are not
    # the same as the ones used in the final UFC form.
    # See 'reduced_coefficients' below.
    self.original_form = form

    # --- Pass form integrands through some symbolic manipulation

    # Note: Default behaviour here will process form the way that is
    # currently expected by vanilla FFC

    # Check that the form does not try to compare complex quantities:
    # if the quantites being compared are 'provably' real, wrap them
    # with Real, otherwise throw an error.
    if complex_mode:
        form = do_comparison_check(form)

    # Lower abstractions for tensor-algebra types into index notation,
    # reducing the number of operators later algorithms and form
    # compilers need to handle
    form = apply_algebra_lowering(form)

    # After lowering to index notation, remove any complex nodes that
    # have been introduced but are not wanted when working in real mode,
    # allowing for purely real forms to be written
    if not complex_mode:
        form = remove_complex_nodes(form)

    # Apply differentiation before function pullbacks, because for
    # example coefficient derivatives are more complicated to derive
    # after coefficients are rewritten, and in particular for
    # user-defined coefficient relations it just gets too messy
    form = apply_derivatives(form)

    # strip the coordinate derivatives away from the integral as they
    # interfere with the integral grouping
    (form, coordinate_derivatives) = strip_coordinate_derivatives(form)

    # --- Group form integrals
    # TODO: Refactor this, it's rather opaque what this does
    # TODO: Is self.original_form.ufl_domains() right here?
    #       It will matter when we start including 'num_domains' in ufc form.
    form = group_form_integrals(form, self.original_form.ufl_domains())

    # attach coordinate derivatives again
    form = attach_coordinate_derivatives(form, coordinate_derivatives)

    # Estimate polynomial degree of integrands now, before applying
    # any pullbacks and geometric lowering.  Otherwise quad degrees
    # blow up horrifically.
    if do_estimate_degrees:
        form = attach_estimated_degrees(form)

    if do_apply_function_pullbacks:
        # Rewrite coefficients and arguments in terms of their
        # reference cell values with Piola transforms and symmetry
        # transforms injected where needed.
        # Decision: Not supporting grad(dolfin.Expression) without a
        #           Domain.  Current dolfin works if Expression has a
        #           cell but this should be changed to a mesh.
        form = apply_function_pullbacks(form)

    # Scale integrals to reference cell frames
    if do_apply_integral_scaling:
        form = apply_integral_scaling(form)

    # Apply default restriction to fully continuous terminals
    if do_apply_default_restrictions:
        form = apply_default_restrictions(form)

    # Lower abstractions for geometric quantities into a smaller set
    # of quantities, allowing the form compiler to deal with a smaller
    # set of types and treating geometric quantities like any other
    # expressions w.r.t. loop-invariant code motion etc.
    if do_apply_geometry_lowering:
        form = apply_geometry_lowering(form, preserve_geometry_types)

    # Apply differentiation again, because the algorithms above can
    # generate new derivatives or rewrite expressions inside
    # derivatives
    if do_apply_function_pullbacks or do_apply_geometry_lowering:
        form = apply_derivatives(form)

        # Neverending story: apply_derivatives introduces new Jinvs,
        # which needs more geometry lowering
        if do_apply_geometry_lowering:
            form = apply_geometry_lowering(form, preserve_geometry_types)
            # Lower derivatives that may have appeared
            form = apply_derivatives(form)

    form = apply_coordinate_derivatives(form)

    # Propagate restrictions to terminals
    if do_apply_restrictions:
        form = apply_restrictions(form)

    # --- Group integrals into IntegralData objects
    # Most of the heavy lifting is done above in group_form_integrals.
    self.integral_data = build_integral_data(form.integrals())

    # --- Create replacements for arguments and coefficients

    # Figure out which form coefficients each integral should enable
    for itg_data in self.integral_data:
        itg_coeffs = set()
        # Get all coefficients in integrand
        for itg in itg_data.integrals:
            itg_coeffs.update(extract_coefficients(itg.integrand()))
        # Store with IntegralData object
        itg_data.integral_coefficients = itg_coeffs

    # Figure out which coefficients from the original form are
    # actually used in any integral (Differentiation may reduce the
    # set of coefficients w.r.t. the original form)
    reduced_coefficients_set = set()
    for itg_data in self.integral_data:
        reduced_coefficients_set.update(itg_data.integral_coefficients)
    self.reduced_coefficients = sorted(reduced_coefficients_set,
                                       key=lambda c: c.count())
    self.num_coefficients = len(self.reduced_coefficients)
    self.original_coefficient_positions = [i for i, c in enumerate(self.original_form.coefficients())
                                           if c in self.reduced_coefficients]

    # Store back into integral data which form coefficients are used
    # by each integral
    for itg_data in self.integral_data:
        itg_data.enabled_coefficients = [bool(coeff in itg_data.integral_coefficients)
                                         for coeff in self.reduced_coefficients]

    # --- Collect some trivial data

    # Get rank of form from argument list (assuming not a mixed arity form)
    self.rank = len(self.original_form.arguments())

    # Extract common geometric dimension (topological is not common!)
    self.geometric_dimension = self.original_form.integrals()[0].ufl_domain().geometric_dimension()

    # --- Build mapping from old incomplete element objects to new
    # well defined elements.  This is to support the Expression
    # construct in dolfin which subclasses Coefficient but doesn't
    # provide an element, and the Constant construct that doesn't
    # provide the domain that a Coefficient is supposed to have. A
    # future design iteration in UFL/UFC/FFC/DOLFIN may allow removal
    # of this mapping with the introduction of UFL types for
    # Expression-like functions that can be evaluated in quadrature
    # points.
    self.element_replace_map = _compute_element_mapping(self.original_form)

    # Mappings from elements and coefficients that reside in form to
    # objects with canonical numbering as well as completed cells and
    # elements
    renumbered_coefficients, function_replace_map = \
        _build_coefficient_replace_map(self.reduced_coefficients,
                                       self.element_replace_map)
    self.function_replace_map = function_replace_map

    # --- Store various lists of elements and sub elements (adds
    #     members to self)
    _compute_form_data_elements(self,
                                self.original_form.arguments(),
                                renumbered_coefficients,
                                self.original_form.ufl_domains())

    # --- Store number of domains for integral types
    # TODO: Group this by domain first. For now keep a backwards
    # compatible data structure.
    self.max_subdomain_ids = _compute_max_subdomain_ids(self.integral_data)

    # --- Checks
    _check_elements(self)
    _check_facet_geometry(self.integral_data)

    # TODO: This is a very expensive check... Replace with something
    # faster!
    preprocessed_form = reconstruct_form_from_integral_data(self.integral_data)

    # If in real mode, remove complex nodes entirely.
    if not complex_mode:
        preprocessed_form = remove_complex_nodes(preprocessed_form)

    check_form_arity(preprocessed_form, self.original_form.arguments(), complex_mode)  # Currently testing how fast this is

    # TODO: This member is used by unit tests, change the tests to
    # remove this!
    self.preprocessed_form = preprocessed_form

    return self