def dot(self, o, a, b):
     ai = indices(a.rank()-1)
     bi = indices(b.rank()-1)
     k  = indices(1)
     # Create an IndexSum over a Product
     s = a[ai+k]*b[k+bi]
     return as_tensor(s, ai+bi)
 def nabla_grad(self, o, a):
     j = Index()
     if a.rank() > 0:
         ii = tuple(indices(a.rank()))
         return as_tensor(a[ii].dx(j), (j,) + ii)
     else:
         return as_tensor(a.dx(j), (j,))
def _div(self, o):
    if not isinstance(o, _valid_types):
        return NotImplemented
    sh = self.shape()
    if sh:
        ii = indices(len(sh))
        d = Division(self[ii], o)
        return as_tensor(d, ii)
    return Division(self, o)
Пример #4
0
def as_scalar(expression):
    """Given a scalar or tensor valued expression A, returns either of the tuples::

      (a,b) = (A, ())
      (a,b) = (A[indices], indices)

    such that a is always a scalar valued expression."""
    ii = indices(expression.rank())
    if ii:
        expression = expression[ii]
    return expression, ii
Пример #5
0
def contraction(a, a_axes, b, b_axes):
    "UFL operator: Take the contraction of a and b over given axes."
    ai, bi = a_axes, b_axes
    ufl_assert(len(ai) == len(bi), "Contraction must be over the same number of axes.")
    ash = a.shape()
    bsh = b.shape()
    aii = indices(a.rank())
    bii = indices(b.rank())
    cii = indices(len(ai))
    shape = [None]*len(ai)
    for i,j in enumerate(ai):
        aii[j] = cii[i]
        shape[i] = ash[j]
    for i,j in enumerate(bi):
        bii[j] = cii[i]
        ufl_assert(shape[i] == bsh[j], "Shape mismatch in contraction.")
    s = a[aii]*b[bii]
    cii = set(cii)
    ii = tuple(i for i in (aii + bii) if not i in cii)
    return as_tensor(s, ii)
Пример #6
0
 def compute_gprimeterm(ngrads, vval, vcomp, wshape, wcomp):
     # Apply gradients directly to argument vval,
     # and get the right indexed scalar component(s)
     kk = indices(ngrads)
     Dvkk = apply_grads(vval)[vcomp + kk]
     # Place scalar component(s) Dvkk into the right tensor positions
     if wshape:
         Ejj, jj = unit_indexed_tensor(wshape, wcomp)
     else:
         Ejj, jj = 1, ()
     gprimeterm = as_tensor(Ejj * Dvkk, jj + kk)
     return gprimeterm
Пример #7
0
 def compute_gprimeterm(ngrads, vval, vcomp, wshape, wcomp):
     # Apply gradients directly to argument vval,
     # and get the right indexed scalar component(s)
     kk = indices(ngrads)
     Dvkk = apply_grads(vval)[vcomp+kk]
     # Place scalar component(s) Dvkk into the right tensor positions
     if wshape:
         Ejj, jj = unit_indexed_tensor(wshape, wcomp)
     else:
         Ejj, jj = 1, ()
     gprimeterm = as_tensor(Ejj*Dvkk, jj+kk)
     return gprimeterm
Пример #8
0
def contraction(a, a_axes, b, b_axes):
    "UFL operator: Take the contraction of a and b over given axes."
    ai, bi = a_axes, b_axes
    ufl_assert(
        len(ai) == len(bi),
        "Contraction must be over the same number of axes.")
    ash = a.shape()
    bsh = b.shape()
    aii = indices(a.rank())
    bii = indices(b.rank())
    cii = indices(len(ai))
    shape = [None] * len(ai)
    for i, j in enumerate(ai):
        aii[j] = cii[i]
        shape[i] = ash[j]
    for i, j in enumerate(bi):
        bii[j] = cii[i]
        ufl_assert(shape[i] == bsh[j], "Shape mismatch in contraction.")
    s = a[aii] * b[bii]
    cii = set(cii)
    ii = tuple(i for i in (aii + bii) if not i in cii)
    return as_tensor(s, ii)
Пример #9
0
    def indexed(self, o):
        A, jj = o.operands()
        A2, Ap = self.visit(A)
        o = self.reuse_if_possible(o, A2, jj)

        if isinstance(Ap, Zero):
            op = self._make_zero_diff(o)
        else:
            r = Ap.rank() - len(jj)
            if r:
                ii = indices(r)
                op = Indexed(Ap, jj._indices + ii)
                op = as_tensor(op, ii)
            else:
                op = Indexed(Ap, jj)
        return (o, op)
Пример #10
0
    def indexed(self, o):
        A, jj = o.operands()
        A2, Ap = self.visit(A)
        o = self.reuse_if_possible(o, A2, jj)

        if isinstance(Ap, Zero):
            op = self._make_zero_diff(o)
        else:
            r = Ap.rank() - len(jj)
            if r:
                ii = indices(r)
                op = Indexed(Ap, jj._indices + ii)
                op = as_tensor(op, ii)
            else:
                op = Indexed(Ap, jj)
        return (o, op)
Пример #11
0
    def _make_ones_diff(self, o):
        ufl_assert(o.shape() == self._var_shape,
                   "This is only used by VariableDerivative, yes?")
        # Define a scalar value with the right indices
        # (kind of cumbersome this... any simpler way?)

        sh = o.shape()
        fi = o.free_indices()
        idims = dict(o.index_dimensions())

        if self._var_free_indices:
            # Currently assuming only one free variable index
            i, = self._var_free_indices
            if i not in idims:
                fi = unique_indices(fi + (i, ))
                idims[i] = self._var_index_dimensions[i]

        # Create a 1 with index annotations
        one = IntValue(1, (), fi, idims)

        res = None
        if sh == ():
            return one
        elif len(sh) == 1:
            # FIXME: If sh == (1,), I think this will get the wrong shape?
            # I think we should make sure sh=(1,...,1) is always converted to () early.
            fp = Identity(sh[0])
        else:
            ind1 = ()
            ind2 = ()
            for d in sh:
                i, j = indices(2)
                dij = Identity(d)[i, j]
                if res is None:
                    res = dij
                else:
                    res *= dij
                ind1 += (i, )
                ind2 += (j, )
            fp = as_tensor(res, ind1 + ind2)

        # Apply index annotations
        if fi:
            fp *= one

        return fp
Пример #12
0
    def _make_ones_diff(self, o):
        ufl_assert(o.shape() == self._var_shape, "This is only used by VariableDerivative, yes?")
        # Define a scalar value with the right indices
        # (kind of cumbersome this... any simpler way?)

        sh = o.shape()
        fi = o.free_indices()
        idims = dict(o.index_dimensions())

        if self._var_free_indices:
            # Currently assuming only one free variable index
            i, = self._var_free_indices
            if i not in idims:
                fi = unique_indices(fi + (i,))
                idims[i] = self._var_index_dimensions[i]

        # Create a 1 with index annotations
        one = IntValue(1, (), fi, idims)

        res = None
        if sh == ():
            return one
        elif len(sh) == 1:
            # FIXME: If sh == (1,), I think this will get the wrong shape?
            # I think we should make sure sh=(1,...,1) is always converted to () early.
            fp = Identity(sh[0])
        else:
            ind1 = ()
            ind2 = ()
            for d in sh:
                i, j = indices(2)
                dij = Identity(d)[i, j]
                if res is None:
                    res = dij
                else:
                    res *= dij
                ind1 += (i,)
                ind2 += (j,)
            fp = as_tensor(res, ind1 + ind2)

        # Apply index annotations
        if fi:
            fp *= one

        return fp
Пример #13
0
def unit_indexed_tensor(shape, component):
    from ufl.constantvalue import Identity
    from ufl.operators import outer  # a bit of circular dependency issue here
    r = len(shape)
    if r == 0:
        return 0, ()
    jj = indices(r)
    es = []
    for i in xrange(r):
        s = shape[i]
        c = component[i]
        j = jj[i]
        e = Identity(s)[c, j]
        es.append(e)
    E = es[0]
    for e in es[1:]:
        E = outer(E, e)
    return E, jj
Пример #14
0
def _mult(a, b):
    # Discover repeated indices, which results in index sums
    ai = a.free_indices()
    bi = b.free_indices()
    ii = ai + bi
    ri = repeated_indices(ii)

    # Pick out valid non-scalar products here (dot products):
    # - matrix-matrix (A*B, M*grad(u)) => A . B
    # - matrix-vector (A*v) => A . v
    s1, s2 = a.shape(), b.shape()
    r1, r2 = len(s1), len(s2)
    if r1 == 2 and r2 in (1, 2):
        ufl_assert(not ri,
                   "Not expecting repeated indices in non-scalar product.")

        # Check for zero, simplifying early if possible
        if isinstance(a, Zero) or isinstance(b, Zero):
            shape = s1[:-1] + s2[1:]
            fi = single_indices(ii)
            idims = mergedicts((a.index_dimensions(), b.index_dimensions()))
            idims = subdict(idims, fi)
            return Zero(shape, fi, idims)

        # Return dot product in index notation
        ai = indices(a.rank() - 1)
        bi = indices(b.rank() - 1)
        k = indices(1)
        # Create an IndexSum over a Product
        s = a[ai + k] * b[k + bi]
        return as_tensor(s, ai + bi)

    elif not (r1 == 0 and r2 == 0):
        # Scalar - tensor product
        if r2 == 0:
            a, b = b, a
            s1, s2 = s2, s1

        # Check for zero, simplifying early if possible
        if isinstance(a, Zero) or isinstance(b, Zero):
            shape = s2
            fi = single_indices(ii)
            idims = mergedicts((a.index_dimensions(), b.index_dimensions()))
            idims = subdict(idims, fi)
            return Zero(shape, fi, idims)

        # Repeated indices are allowed, like in:
        #v[i]*M[i,:]

        # Apply product to scalar components
        ii = indices(b.rank())
        p = Product(a, b[ii])

        # Wrap as tensor again
        p = as_tensor(p, ii)

        # TODO: Should we apply IndexSum or as_tensor first?

        # Apply index sums
        for i in ri:
            p = IndexSum(p, i)

        return p

    # Scalar products use Product and IndexSum for implicit sums:
    p = Product(a, b)
    for i in ri:
        p = IndexSum(p, i)
    return p
Пример #15
0
#
# You should have received a copy of the GNU Lesser General Public License
# along with UFL. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Anders Logg, 2008
# Modified by Kristian Oelgaard, 2009
#
# First added:  2008-03-14
# Last changed: 2013-01-11

from ufl.indexing import indices
from ufl.integral import Measure
from ufl.geometry import Cell

# Default indices
i, j, k, l = indices(4)
p, q, r, s = indices(4)

# Default measures for integration
dx = Measure(Measure.CELL,           Measure.DOMAIN_ID_DEFAULT)
ds = Measure(Measure.EXTERIOR_FACET, Measure.DOMAIN_ID_DEFAULT)
dS = Measure(Measure.INTERIOR_FACET, Measure.DOMAIN_ID_DEFAULT)
dP = Measure(Measure.POINT,          Measure.DOMAIN_ID_DEFAULT)
dE = Measure(Measure.MACRO_CELL,     Measure.DOMAIN_ID_DEFAULT)
dc = Measure(Measure.SURFACE,        Measure.DOMAIN_ID_DEFAULT)

# Cell types
cell1D        = Cell("cell1D", 1)
cell2D        = Cell("cell2D", 2)
cell3D        = Cell("cell3D", 3)
vertex        = Cell("vertex", 0)
Пример #16
0
def analyse_key(ii, rank):
    """Takes something the user might input as an index tuple
    inside [], which could include complete slices (:) and
    ellipsis (...), and returns tuples of actual UFL index objects.

    The return value is a tuple (indices, axis_indices),
    each being a tuple of IndexBase instances.

    The return value 'indices' corresponds to all
    input objects of these types:
    - Index
    - FixedIndex
    - int => Wrapped in FixedIndex

    The return value 'axis_indices' corresponds to all
    input objects of these types:
    - Complete slice (:) => Replaced by a single new index
    - Ellipsis (...) => Replaced by multiple new indices
    """
    # Wrap in tuple
    if not isinstance(ii, (tuple, MultiIndex)):
        ii = (ii, )
    else:
        # Flatten nested tuples, happens with f[...,ii] where ii is a tuple of indices
        jj = []
        for j in ii:
            if isinstance(j, (tuple, MultiIndex)):
                jj.extend(j)
            else:
                jj.append(j)
        ii = tuple(jj)

    # Convert all indices to Index or FixedIndex objects.
    # If there is an ellipsis, split the indices into before and after.
    axis_indices = set()
    pre = []
    post = []
    indexlist = pre
    for i in ii:
        if i == Ellipsis:
            # Switch from pre to post list when an ellipsis is encountered
            ufl_assert(indexlist is pre, "Found duplicate ellipsis.")
            indexlist = post
        else:
            # Convert index to a proper type
            if isinstance(i, int):
                idx = FixedIndex(i)
            elif isinstance(i, IndexBase):
                idx = i
            elif isinstance(i, slice):
                if i == slice(None):
                    idx = Index()
                    axis_indices.add(idx)
                else:
                    # TODO: Use ListTensor to support partial slices?
                    error(
                        "Partial slices not implemented, only complete slices like [:]"
                    )
            else:
                print '\n', '=' * 60
                print Index, id(Index)
                print type(i), id(type(i))
                print str(i)
                print repr(i)
                print type(i).__module__
                print Index.__module__
                print '\n', '=' * 60
                error("Can't convert this object to index: %r" % i)

            # Store index in pre or post list
            indexlist.append(idx)

    # Handle ellipsis as a number of complete slices,
    # that is create a number of new axis indices
    num_axis = rank - len(pre) - len(post)
    if indexlist is post:
        ellipsis_indices = indices(num_axis)
        axis_indices.update(ellipsis_indices)
    else:
        ellipsis_indices = ()

    # Construct final tuples to return
    all_indices = tuple(chain(pre, ellipsis_indices, post))
    axis_indices = tuple(i for i in all_indices if i in axis_indices)
    return all_indices, axis_indices
 def inner(self, o, a, b):
     ufl_assert(a.rank() == b.rank())
     ii = indices(a.rank())
     # Create multiple IndexSums over a Product
     s = a[ii]*b[ii]
     return s
 def outer(self, o, a, b):
     ii = indices(a.rank())
     jj = indices(b.rank())
     # Create a Product with no shared indices
     s = a[ii]*b[jj]
     return as_tensor(s, ii+jj)
 def sym(self, o, A):
     i, j = indices(2)
     return as_matrix( (A[i,j] + A[j,i]) / 2, (i,j) )
 def transposed(self, o, A):
     i, j = indices(2)
     return as_tensor(A[i, j], (j, i))
 def nabla_grad(self, o, a):
     r = o.rank()
     ii = indices(r)
     jj = ii[-1:] + ii[:-1]
     return as_tensor(Grad(a)[ii], jj)