def hyperelasticity(domain, q, p, nf=0): # Based on https://github.com/firedrakeproject/firedrake-bench/blob/experiments/forms/firedrake_forms.py V = ufl.FunctionSpace(domain, ufl.VectorElement('P', domain.ufl_cell(), q)) P = ufl.FunctionSpace(domain, ufl.VectorElement('P', domain.ufl_cell(), p)) v = ufl.TestFunction(V) du = ufl.TrialFunction(V) # Incremental displacement u = ufl.Coefficient(V) # Displacement from previous iteration B = ufl.Coefficient(V) # Body force per unit mass # Kinematics I = ufl.Identity(domain.ufl_cell().topological_dimension()) F = I + ufl.grad(u) # Deformation gradient C = F.T*F # Right Cauchy-Green tensor E = (C - I)/2 # Euler-Lagrange strain tensor E = ufl.variable(E) # Material constants mu = ufl.Constant(domain) # Lame's constants lmbda = ufl.Constant(domain) # Strain energy function (material model) psi = lmbda/2*(ufl.tr(E)**2) + mu*ufl.tr(E*E) S = ufl.diff(psi, E) # Second Piola-Kirchhoff stress tensor PK = F*S # First Piola-Kirchoff stress tensor # Variational problem it = ufl.inner(PK, ufl.grad(v)) - ufl.inner(B, v) f = [ufl.Coefficient(P) for _ in range(nf)] return ufl.derivative(reduce(ufl.inner, list(map(ufl.div, f)) + [it])*ufl.dx, u, du)
def stf3d2(rank2_2d): r""" Return the 3D symmetric and trace-free part of a 2D 2-tensor. .. warning:: Return a 2-tensor with the same dimensions as the input tensor. For the :math:`2 \times 2` case, return the 3D symmetric and trace-free (dev(sym(.))) :math:`B \in \mathbb{R}^{2 \times 2}` of the 2D 2-tensor :math:`A \in \mathbb{R}^{2 \times 2}`. .. math:: A &= \begin{pmatrix} a_{xx} & a_{xy} \\ a_{yx} & a_{yy} \end{pmatrix} \\ B &= (A)_\mathrm{dev} = \frac{1}{2} (A)_\mathrm{sym} - \frac{1}{3} \mathrm{tr}(A) I_{2 \times 2} """ dim = len(rank2_2d[:, 0]) symm = 1 / 2 * (rank2_2d + ufl.transpose(rank2_2d)) return symm - (1 / 3) * ufl.tr(symm) * ufl.Identity(dim)
def stress0(self, u): strain = self.eps(u) lmbda = self.lmbda mu = self.mu sigma = 2 * mu * strain + lmbda * ufl.tr(strain) * ufl.Identity( self.model_dimension) return sigma
def T(v, p): """Constitutive relation for Bingham - Cauchy stress as a function of velocity and pressure.""" # Deviatoric strain rate D_ = ufl.dev(D(v)) # == D(v) if div(v)=0 # Second invariant rJ2_ = rJ2(D_) # Regularisation mu_effective = mu + tau_zero * 1.0 / (2. * (rJ2_ + tau_zero_regularisation)) # Cauchy stress T = -p * ufl.Identity(2) + 2.0 * mu_effective * D_ return T
def problem(): mesh = dolfin.UnitCubeMesh(MPI.comm_world, 10, 10, 10) cell = mesh.ufl_cell() vec_element = dolfin.VectorElement("Lagrange", cell, 1) # scl_element = dolfin.FiniteElement("Lagrange", cell, 1) Q = dolfin.FunctionSpace(mesh, vec_element) # Qs = dolfin.FunctionSpace(mesh, scl_element) # Coefficients v = dolfin.function.argument.TestFunction(Q) # Test function du = dolfin.function.argument.TrialFunction(Q) # Incremental displacement u = dolfin.Function(Q) # Displacement from previous iteration B = dolfin.Constant((0.0, -0.5, 0.0), cell) # Body force per unit volume T = dolfin.Constant((0.1, 0.0, 0.0), cell) # Traction force on the boundary # B, T = dolfin.Function(Q), dolfin.Function(Q) # Kinematics d = u.geometric_dimension() F = ufl.Identity(d) + grad(u) # Deformation gradient C = F.T * F # Right Cauchy-Green tensor # Invariants of deformation tensors Ic = tr(C) J = det(F) # Elasticity parameters E, nu = 10.0, 0.3 mu = dolfin.Constant(E / (2 * (1 + nu)), cell) lmbda = dolfin.Constant(E * nu / ((1 + nu) * (1 - 2 * nu)), cell) # mu, lmbda = dolfin.Function(Qs), dolfin.Function(Qs) # Stored strain energy density (compressible neo-Hookean model) psi = (mu / 2) * (Ic - 3) - mu * ln(J) + (lmbda / 2) * (ln(J))**2 # Total potential energy Pi = psi * dx - dot(B, u) * dx - dot(T, u) * ds # Compute first variation of Pi (directional derivative about u in the direction of v) F = ufl.derivative(Pi, u, v) # Compute Jacobian of F J = ufl.derivative(F, u, du) return J, F
def eigenstate_legacy(A): """Eigenvalues and eigenprojectors of the 3x3 (real-valued) tensor A. Provides the spectral decomposition A = sum_{a=0}^{2} λ_a * E_a with eigenvalues λ_a and their associated eigenprojectors E_a = n_a^R x n_a^L ordered by magnitude. The eigenprojectors of eigenvalues with multiplicity n are returned as 1/n-fold projector. Note: Tensor A must not have complex eigenvalues! """ if ufl.shape(A) != (3, 3): raise RuntimeError( f"Tensor A of shape {ufl.shape(A)} != (3, 3) is not supported!") # eps = 1.0e-10 # A = ufl.variable(A) # # --- determine eigenvalues λ0, λ1, λ2 # # additively decompose: A = tr(A) / 3 * I + dev(A) = q * I + B q = ufl.tr(A) / 3 B = A - q * ufl.Identity(3) # observe: det(λI - A) = 0 with shift λ = q + ω --> det(ωI - B) = 0 = ω**3 - j * ω - b j = ufl.tr( B * B ) / 2 # == -I2(B) for trace-free B, j < 0 indicates A has complex eigenvalues b = ufl.tr(B * B * B) / 3 # == I3(B) for trace-free B # solve: 0 = ω**3 - j * ω - b by substitution ω = p * cos(phi) # 0 = p**3 * cos**3(phi) - j * p * cos(phi) - b | * 4 / p**3 # 0 = 4 * cos**3(phi) - 3 * cos(phi) - 4 * b / p**3 | --> p := sqrt(j * 4 / 3) # 0 = cos(3 * phi) - 4 * b / p**3 # 0 = cos(3 * phi) - r with -1 <= r <= +1 # phi_k = [acos(r) + (k + 1) * 2 * pi] / 3 for k = 0, 1, 2 p = 2 / ufl.sqrt(3) * ufl.sqrt(j + eps**2) # eps: MMM r = 4 * b / p**3 r = ufl.Max(ufl.Min(r, +1 - eps), -1 + eps) # eps: LMM, MMH phi = ufl.acos(r) / 3 # sorted eigenvalues: λ0 <= λ1 <= λ2 λ0 = q + p * ufl.cos(phi + 2 / 3 * ufl.pi) # low λ1 = q + p * ufl.cos(phi + 4 / 3 * ufl.pi) # middle λ2 = q + p * ufl.cos(phi) # high # # --- determine eigenprojectors E0, E1, E2 # E0 = ufl.diff(λ0, A).T E1 = ufl.diff(λ1, A).T E2 = ufl.diff(λ2, A).T # return [λ0, λ1, λ2], [E0, E1, E2]
def hyperelasticity_action_forms(mesh, vec_el): cell = mesh.ufl_cell() Q = dolfin.FunctionSpace(mesh, vec_el) # Coefficients v = dolfin.function.argument.TestFunction(Q) # Test function du = dolfin.function.argument.TrialFunction(Q) # Incremental displacement u = dolfin.Function(Q) # Displacement from previous iteration u.vector().set(0.5) B = dolfin.Constant((0.0, -0.5, 0.0), cell) # Body force per unit volume T = dolfin.Constant((0.1, 0.0, 0.0), cell) # Traction force on the boundary # Kinematics d = u.geometric_dimension() F = ufl.Identity(d) + grad(u) # Deformation gradient C = F.T * F # Right Cauchy-Green tensor # Invariants of deformation tensors Ic = tr(C) J = det(F) # Elasticity parameters E, nu = 10.0, 0.3 mu = dolfin.Constant(E / (2 * (1 + nu)), cell) lmbda = dolfin.Constant(E * nu / ((1 + nu) * (1 - 2 * nu)), cell) # Stored strain energy density (compressible neo-Hookean model) psi = (mu / 2) * (Ic - 3) - mu * ln(J) + (lmbda / 2) * (ln(J)) ** 2 # Total potential energy Pi = psi * dx - dot(B, u) * dx - dot(T, u) * ds # Compute first variation of Pi (directional derivative about u in the direction of v) F = ufl.derivative(Pi, u, v) # Compute Jacobian of F J = ufl.derivative(F, u, du) w = dolfin.Function(Q) w.vector().set(1.2) L = ufl.action(J, w) return None, L, None
def test_metric_math(dim): """ Check that the metric exponential and metric logarithm are indeed inverses. """ mesh = uniform_mesh(dim, 1) P0_ten = firedrake.TensorFunctionSpace(mesh, "DG", 0) I = ufl.Identity(dim) M = firedrake.interpolate(2 * I, P0_ten) logM = metric_logarithm(M) expected = firedrake.interpolate(np.log(2) * I, P0_ten) assert np.allclose(logM.dat.data, expected.dat.data) M_ = metric_exponential(logM) assert np.allclose(M.dat.data, M_.dat.data) expM = metric_exponential(M) expected = firedrake.interpolate(np.exp(2) * I, P0_ten) assert np.allclose(expM.dat.data, expected.dat.data) M_ = metric_logarithm(expM) assert np.allclose(M.dat.data, M_.dat.data)
def eig(A): """Eigenvalues of 3x3 tensor""" eps = 1.0e-12 q = ufl.tr(A) / 3.0 p1 = 0.5 * (A[0, 1]**2 + A[1, 0]**2 + A[0, 2]**2 + A[2, 0]**2 + A[1, 2]**2 + A[2, 1]**2) p2 = (A[0, 0] - q)**2 + (A[1, 1] - q)**2 + (A[2, 2] - q)**2 + 2 * p1 p = ufl.sqrt(p2 / 6) B = (A - q * ufl.Identity(3)) r = ufl.det(B) / (2 * p**3) r = ufl.Max(ufl.Min(r, 1.0 - eps), -1.0 + eps) phi = ufl.acos(r) / 3.0 eig0 = ufl.conditional(p2 < eps, q, q + 2 * p * ufl.cos(phi)) eig2 = ufl.conditional(p2 < eps, q, q + 2 * p * ufl.cos(phi + (2 * numpy.pi / 3))) eig1 = ufl.conditional(p2 < eps, q, 3 * q - eig0 - eig2) # since trace(A) = eig1 + eig2 + eig3 return eig0, eig1, eig2
def eps_sh_au(t): """Autogeneous shrinkage strain Parameters ---------- t: Time [days] Note ---- The Book, page 722, formulas (D.17, D.18, D.19, D.20) with parameters for cement type from table D.4 """ if args.ct == "R": r_alpha = 1.0 r_eps = -3.5 eps_aucem = 210 * 1.0e-6 t_aucem = 1.0 elif args.ct == "RS": r_alpha = 1.40 r_eps = -3.5 eps_aucem = -84 * 1.0e-6 t_aucem = 41.0 elif args.ct == "SL": r_alpha = 1.0 r_eps = -3.5 eps_aucem = 0.0 t_aucem = 1.0 # Autogeneous shrinkage eps_infty_sh_au = (eps_aucem * (ac / 6.0)**-0.75 * (wc / 0.38)**r_eps) tau_au = t_aucem * (wc / 0.38)**3.0 au_alpha = r_alpha * wc / 0.38 return -eps_infty_sh_au * (1.0 + (tau_au / t)**au_alpha)**-4.5 * ufl.Identity(3)
def D_rebar_map(A): """Unit stiffness tensor (rebars) mapping strain -> stress.""" return lambda_rebar_ * ufl.tr(A) * ufl.Identity(3) + 2 * mu_rebar * A
def sigma_law(u): return lame[0] * ufl.nabla_div(u) * ufl.Identity( 2) + 2 * lame[1] * symgrad(u)
def sigma(v): return (1/(1+Nu))*strain(v) + ((1*Nu)/((1+Nu)*(1-2*Nu)))*ufl.tr(strain(v))*ufl.Identity(v.geometric_dimension()) #v.cell().d
m, δm = [u], [δu] # Boundary conditions alpha, u2 = 0.25 * np.pi / 8, 0.40 def u_bar(x): return np.array([x[2] * (x[0] - (x[0] * np.cos(alpha) - x[1] * np.sin(alpha))), x[2] * (x[1] - (x[0] * np.sin(alpha) + x[1] * np.cos(alpha))), x[2] * u2]) u_.interpolate(u_bar) # Kinematics F = ufl.Identity(3) + ufl.grad(u) C = F.T * F # C = F.T + F - ufl.Identity(3) # linearised C # Spectral decomposition of C (c0, c1, c2), (E0, E1, E2) = dolfiny.invariants.eigenstate(C) # Squares of principal stretches c = ufl.as_vector([c0, c1, c2]) c = ufl.variable(c) # Variation of squares of principal stretches δc = dolfiny.expression.derivative(c, m, δm) # Elasticity parameters E = dolfinx.fem.Constant(mesh, 10.0) nu = dolfinx.fem.Constant(mesh, 0.4) mu = E / (2 * (1 + nu))
a11 = None L0 = ufl.inner(f, v) * ufl.dx L1 = ufl.inner(dolfinx.fem.Constant(mesh, PETSc.ScalarType(0.0)), q) * ufl.dx # No prescribed shear stress n = ufl.FacetNormal(mesh) g_tau = tangential_proj(dolfinx.fem.Constant( mesh, PETSc.ScalarType(((0, 0), (0, 0)))) * n, n) ds = ufl.Measure("ds", domain=mesh, subdomain_data=mt, subdomain_id=1) # Terms due to slip condition # Explained in for instance: https://arxiv.org/pdf/2001.10639.pdf a00 -= ufl.inner(ufl.outer(n, n) * ufl.dot(2 * mu * sym_grad(u), n), v) * ds a01 -= ufl.inner(ufl.outer(n, n) * ufl.dot( - p * ufl.Identity(u.ufl_shape[0]), n), v) * ds L0 += ufl.inner(g_tau, v) * ds a = [[dolfinx.fem.form(a00), dolfinx.fem.form(a01)], [dolfinx.fem.form(a10), dolfinx.fem.form(a11)]] L = [dolfinx.fem.form(L0), dolfinx.fem.form(L1)] # Assemble LHS matrix and RHS vector with dolfinx.common.Timer("~Stokes: Assemble LHS and RHS"): A = dolfinx_mpc.create_matrix_nest(a, [mpc, mpc_q]) dolfinx_mpc.assemble_matrix_nest(A, a, [mpc, mpc_q], bcs) A.assemble() b = dolfinx_mpc.create_vector_nest(L, [mpc, mpc_q]) dolfinx_mpc.assemble_vector_nest(b, L, [mpc, mpc_q])
def sigma_u(u): """Consitutive relation for stress-strain. Assuming plane-stress in XY""" eps = 0.5 * (ufl.grad(u) + ufl.grad(u).T) sigma = E / (1. - nu**2) * ( (1. - nu) * eps + nu * ufl.Identity(2) * ufl.tr(eps)) return sigma
def sigma(v): return (2.0 * mu * ufl.sym(ufl.grad(v)) + lmbda * ufl.tr(ufl.sym(ufl.grad(v))) * ufl.Identity(len(v)))
def D_map(A): """Unit stiffness tensor mapping strain -> stress.""" return lambda_ * ufl.tr(A) * ufl.Identity(3) + 2 * mu * A
# Jacobi matrix of map reference -> undeformed J0 = ufl.geometry.Jacobian(mesh) # Tangent basis gs = J0[:, 0] gη = ufl.as_vector([0, 1, 0]) # unit vector e_y (assume curve in x-z plane) gξ = ufl.cross(gs, gη) # Unit tangent basis gs /= ufl.sqrt(ufl.dot(gs, gs)) gη /= ufl.sqrt(ufl.dot(gη, gη)) gξ /= ufl.sqrt(ufl.dot(gξ, gξ)) # Interpolate normal vector dolfiny.interpolation.interpolate(gξ, n0i) # ---------------------------------------------------------------------------- # Orthogonal projection operator (assumes sufficient geometry approximation) P = ufl.Identity(mesh.geometry.dim) - ufl.outer(n0i, n0i) # Thickness variable X = dolfinx.FunctionSpace(mesh, ("DG", q)) ξ = dolfinx.Function(X, name='ξ') # Undeformed configuration: director d0 and placement b0 d0 = n0i # normal of manifold mesh, interpolated b0 = x0 + ξ * d0 # Deformed configuration: director d and placement b, assumed kinematics, director uses rotation matrix d = ufl.as_matrix([[ufl.cos(r), 0, ufl.sin(r)], [0, 1, 0], [-ufl.sin(r), 0, ufl.cos(r)]]) * d0 b = x0 + ufl.as_vector([u, 0, w]) + ξ * d # Configuration gradient, undeformed configuration
def assemble_test(cell_batch_size: int): mesh = dolfin.UnitCubeMesh(MPI.comm_world, 40, 40, 40) def isochoric(F): C = F.T*F I_1 = tr(C) I4_f = dot(e_f, C*e_f) I4_s = dot(e_s, C*e_s) I8_fs = dot(e_f, C*e_s) def cutoff(x): return 1.0/(1.0 + ufl.exp(-(x - 1.0)*30.0)) def scaled_exp(a0, a1, argument): return a0/(2.0*a1)*(ufl.exp(b*argument) - 1) E_1 = scaled_exp(a, b, I_1 - 3.) E_f = cutoff(I4_f)*scaled_exp(a_f, b_f, (I4_f - 1.)**2) E_s = cutoff(I4_s)*scaled_exp(a_s, b_s, (I4_s - 1.)**2) E_3 = scaled_exp(a_fs, b_fs, I8_fs**2) E = E_1 + E_f + E_s + E_3 return E cell = mesh.ufl_cell() lamda = dolfin.Constant(0.48, cell) a = dolfin.Constant(1.0, cell) b = dolfin.Constant(1.0, cell) a_s = dolfin.Constant(1.0, cell) b_s = dolfin.Constant(1.0, cell) a_f = dolfin.Constant(1.0, cell) b_f = dolfin.Constant(1.0, cell) a_fs = dolfin.Constant(1.0, cell) b_fs = dolfin.Constant(1.0, cell) # For more fun, make these general vector fields rather than # constants: e_s = dolfin.Constant([0.0, 1.0, 0.0], cell) e_f = dolfin.Constant([1.0, 0.0, 0.0], cell) V = dolfin.FunctionSpace(mesh, ufl.VectorElement("CG", cell, 1)) u = dolfin.Function(V) du = dolfin.function.argument.TrialFunction(V) v = dolfin.function.argument.TestFunction(V) # Misc elasticity related tensors and other quantities F = grad(u) + ufl.Identity(3) F = ufl.variable(F) J = det(F) Fbar = J**(-1.0/3.0)*F # Define energy E_volumetric = lamda*0.5*ln(J)**2 psi = isochoric(Fbar) + E_volumetric # Find first Piola-Kircchoff tensor P = ufl.diff(psi, F) # Define the variational formulation F = inner(P, grad(v))*dx # Take the derivative J = ufl.derivative(F, u, du) a, L = J, F if cell_batch_size > 1: cxx_flags = "-O2 -ftree-vectorize -funroll-loops -march=native -mtune=native" else: cxx_flags = "-O2" assembler = dolfin.fem.assembling.Assembler([[a]], [L], [], form_compiler_parameters={"cell_batch_size": cell_batch_size, "enable_cross_cell_gcc_ext": True, "cpp_optimize_flags": cxx_flags}) t = -time.time() A, b = assembler.assemble( mat_type=dolfin.cpp.fem.Assembler.BlockType.monolithic) t += time.time() return A, b, t
def test_neohooke(): mesh = dolfinx.mesh.create_unit_cube(MPI.COMM_WORLD, 7, 7, 7) V = dolfinx.fem.VectorFunctionSpace(mesh, ("P", 1)) P = dolfinx.fem.FunctionSpace(mesh, ("P", 1)) L = dolfinx.fem.FunctionSpace(mesh, ("DG", 0)) u = dolfinx.fem.Function(V, name="u") v = ufl.TestFunction(V) p = dolfinx.fem.Function(P, name="p") q = ufl.TestFunction(P) lmbda0 = dolfinx.fem.Function(L) d = mesh.topology.dim Id = ufl.Identity(d) F = Id + ufl.grad(u) C = F.T * F J = ufl.det(F) E_, nu_ = 10.0, 0.3 mu, lmbda = E_ / (2 * (1 + nu_)), E_ * nu_ / ((1 + nu_) * (1 - 2 * nu_)) psi = (mu / 2) * (ufl.tr(C) - 3) - mu * ufl.ln(J) + lmbda / 2 * ufl.ln(J)**2 + (p - 1.0)**2 pi = psi * ufl.dx F0 = ufl.derivative(pi, u, v) F1 = ufl.derivative(pi, p, q) # Number of eigenvalues to find nev = 8 opts = PETSc.Options("neohooke") opts["eps_smallest_magnitude"] = True opts["eps_nev"] = nev opts["eps_ncv"] = 50 * nev opts["eps_conv_abs"] = True # opts["eps_non_hermitian"] = True opts["eps_tol"] = 1.0e-14 opts["eps_max_it"] = 1000 opts["eps_error_relative"] = "ascii::ascii_info_detail" opts["eps_monitor"] = "ascii" slepcp = dolfiny.slepcblockproblem.SLEPcBlockProblem([F0, F1], [u, p], lmbda0, prefix="neohooke") slepcp.solve() # mat = dolfiny.la.petsc_to_scipy(slepcp.eps.getOperators()[0]) # eigvals, eigvecs = linalg.eigsh(mat, which="SM", k=nev) with dolfinx.io.XDMFFile(MPI.COMM_WORLD, "eigvec.xdmf", "w") as ofile: ofile.write_mesh(mesh) for i in range(nev): eigval, ur, ui = slepcp.getEigenpair(i) # Expect first 6 eignevalues 0, i.e. rigid body modes if i < 6: assert np.isclose(eigval, 0.0) for func in ur: name = func.name func.name = f"{name}_eigvec_{i}_real" ofile.write_function(func) func.name = name
def T(u: Expr, p: Expr, mu: Expr): return 2 * mu * sym_grad(u) - p * ufl.Identity(u.ufl_shape[0])
def sigma(v): return 2.0*mu*epsilon(v) + lmbda*ufl.tr(epsilon(v)) \ * ufl.Identity(v.geometric_dimension())
def S(tau): return tau - ufl.Identity(2) * ufl.tr(tau)
u = dolfinx.fem.Function(Uf, name="u") ut = dolfinx.fem.Function(Uf, name="ut") utt = dolfinx.fem.Function(Uf, name="utt") u_ = dolfinx.fem.Function(Uf, name="u_") # boundary conditions δu = ufl.TestFunction(Uf) # Define state and rate as (ordered) list of functions m, mt, mtt, δm = [u], [ut], [utt], [δu] # Time integrator odeint = dolfiny.odeint.ODEInt2(t=time, dt=dt, x=m, xt=mt, xtt=mtt, rho=0.95) # Configuration gradient I = ufl.Identity(u.geometric_dimension()) # noqa: E741 F = I + ufl.grad(u) # deformation gradient as function of displacement # Strain measures # E = E(u) total strain E = 1 / 2 * (F.T * F - I) # S = S(E) stress S = 2 * mu * E + la * ufl.tr(E) * I # Variation of rate of Green-Lagrange strain δE = dolfiny.expression.derivative(E, m, δm) # Weak form (as one-form) f = ufl.inner(δu, rho * utt) * dx + ufl.inner(δu, eta * ut) * dx \ + ufl.inner(δE, S) * dx \ - ufl.inner(δu, rho * b) * dx
def compile_forms(iv0, iv1, w0, w1, f, g, heat_flux, water_flux, co2_flux, t, dt, reb_dx, con_dx, damage_off=False, randomize=0.0): """Return Jacobian and residual forms""" t0 = time() mesh = w0["displ"].function_space.mesh # Prepare zero initial guesses, test and trial fctions, global w_displ_trial = ufl.TrialFunction(w0["displ"].function_space) w_displ_test = ufl.TestFunction(w0["displ"].function_space) w_temp_trial = ufl.TrialFunction(w0["temp"].function_space) w_temp_test = ufl.TestFunction(w0["temp"].function_space) w_phi_trial = ufl.TrialFunction(w0["phi"].function_space) w_phi_test = ufl.TestFunction(w0["phi"].function_space) w_co2_trial = ufl.TrialFunction(w0["co2"].function_space) w_co2_test = ufl.TestFunction(w0["co2"].function_space) # # Creep, shrinkage strains # # Autogenous shrinkage increment deps_sh_au = (mps.eps_sh_au(t + dt) - mps.eps_sh_au(t)) # Thermal strain increment deps_th = (misc.beta_C * (w1["temp"] - w0["temp"]) * ufl.Identity(3)) # Drying shrinkage increment deps_sh_dr = (mps.k_sh * (w1["phi"] - w0["phi"]) * ufl.Identity(3)) eta_dash_mid = mps.eta_dash(iv0["eta_dash"], dt / 2.0, w0["temp"], w0["phi"]) # Prepare creep factors beta_cr = mps.beta_cr(dt) lambda_cr = mps.lambda_cr(dt, beta_cr) creep_v_mid = mps.creep_v(t + dt / 2.0) if randomize > 0.0: # Randomize Young's modulus # This helps convergence at the point where crack initiation begins # Randomized E fluctuates uniformly in [E-eps/2, E+eps/2] rnd = Function(iv0["eta_dash"].function_space) rnd.vector.array[:] = 1.0 - randomize / 2 + np.random.rand( *rnd.vector.array.shape) * randomize else: rnd = 1.0 E_kelv = rnd * mps.E_kelv(creep_v_mid, lambda_cr, dt, t, eta_dash_mid) gamma0 = [] for i in range(mps.M): gamma0.append(iv0[f"gamma_{i}"]) deps_cr_kel = mps.deps_cr_kel(beta_cr, gamma0, creep_v_mid) deps_cr_dash = mps.deps_cr_dash(iv0["sigma"], eta_dash_mid, dt) deps_el = mech.eps_el(w1["displ"] - w0["displ"], deps_th, deps_cr_kel, deps_cr_dash, deps_sh_dr, deps_sh_au) # Water vapour saturation pressure p_sat = water.p_sat(0.5 * (w1["temp"] + w0["temp"])) water_cont = water.water_cont(0.5 * (w1["phi"] + w0["phi"])) dw_dphi = water.dw_dphi(0.5 * (w1["phi"] + w0["phi"])) # Rate of CaCO_3 concentration change dot_caco3 = co2.dot_caco3(dt * 24 * 60 * 60, iv0["caco3"], w1["phi"], w1["co2"], w1["temp"]) # # Balances residuals # sigma_eff = iv0["sigma"] + mech.stress(E_kelv, deps_el) eps_eqv = ufl.Max( damage_rankine.eps_eqv(sigma_eff, mps.E_static(creep_v_mid)), iv0["eps_eqv"]) f_c = mech.f_c(t) f_t = mech.f_t(f_c) G_f = mech.G_f(f_c) dmg = damage_rankine.damage(eps_eqv, mesh, mps.E_static(creep_v_mid), f_t, G_f) # Prepare stress increments if damage_off: dmg = 0.0 * dmg eps_eqv = iv0["eps_eqv"] sigma_rebar = mech.stress_rebar(mech.E_rebar, w1["displ"]) sigma = (1.0 - dmg) * sigma_eff _con_dx = [] for dx in con_dx: _con_dx += [dx(metadata={"quadrature_degree": quad_degree_stress})] _con_dx = ufl.classes.MeasureSum(*_con_dx) _reb_dx = [] for dx in reb_dx: _reb_dx += [dx(metadata={"quadrature_degree": quad_degree_stress})] _reb_dx = ufl.classes.MeasureSum(*_reb_dx) # Momentum balance for concrete material mom_balance = -ufl.inner(sigma, ufl.grad(w_displ_test)) * _con_dx # Momentum balance for rebar material if len(reb_dx) > 0: mom_balance += -ufl.inner(sigma_rebar, ufl.grad(w_displ_test)) * _reb_dx # Add volume body forces for measure, force in g.items(): mom_balance -= ufl.inner(force, w_displ_test) * measure # Add surface forces to mom balance for measure, force in f.items(): mom_balance += ufl.inner(force, w_displ_test) * measure _thc_dx = [] for dx in con_dx + reb_dx: _thc_dx += [dx(metadata={"quadrature_degree": quad_degree_thc})] _thc_dx = ufl.classes.MeasureSum(*_thc_dx) # Energy balance = evolution of temperature energy_balance = ( mech.rho_c * misc.C_pc / (dt * 24 * 60 * 60) * ufl.inner( (w1["temp"] - w0["temp"]), w_temp_test) * _thc_dx + misc.lambda_c * ufl.inner(ufl.grad(w1["temp"]), ufl.grad(w_temp_test)) * _thc_dx + water.h_v * water.delta_p * ufl.inner(ufl.grad( w1["phi"] * p_sat), ufl.grad(w_temp_test)) * _thc_dx + co2.alpha3 * dot_caco3 * w_temp_test * _thc_dx) # Water balance = evolution of humidity water_balance = (ufl.inner( dw_dphi * 1.0 / (dt * 24 * 60 * 60) * (w1["phi"] - w0["phi"]), w_phi_test) * _thc_dx + ufl.inner( dw_dphi * water.D_ws(water_cont) * ufl.grad(w1["phi"]) + water.delta_p * ufl.grad(w1["phi"] * p_sat), ufl.grad(w_phi_test)) * _thc_dx + co2.alpha2 * dot_caco3 * w_phi_test * _thc_dx) for measure, flux in water_flux.items(): water_balance -= ufl.inner(flux, w_phi_test) * measure co2_balance = ( ufl.inner(1.0 / (dt * 24 * 60 * 60) * (w1["co2"] - w0["co2"]), w_co2_test) * _thc_dx + ufl.inner(co2.D_co2 * ufl.grad(w1["co2"]), ufl.grad(w_co2_test)) * _thc_dx + co2.alpha4 * dot_caco3 * w_co2_test * _thc_dx) for measure, flux in co2_flux.items(): co2_balance -= ufl.inner(flux, w_co2_test) * measure J_mom = ufl.derivative(mom_balance, w1["displ"], w_displ_trial) J_energy_temp = ufl.derivative(energy_balance, w1["temp"], w_temp_trial) J_energy_hum = ufl.derivative(energy_balance, w1["phi"], w_phi_trial) J_energy_co2 = ufl.derivative(energy_balance, w1["co2"], w_co2_trial) J_energy = J_energy_hum + J_energy_temp + J_energy_co2 J_water_temp = ufl.derivative(water_balance, w1["temp"], w_temp_trial) J_water_hum = ufl.derivative(water_balance, w1["phi"], w_phi_trial) J_water_co2 = ufl.derivative(water_balance, w1["co2"], w_co2_trial) J_water = J_water_temp + J_water_hum + J_water_co2 J_co2_temp = ufl.derivative(co2_balance, w1["temp"], w_temp_trial) J_co2_hum = ufl.derivative(co2_balance, w1["phi"], w_phi_trial) J_co2_co2 = ufl.derivative(co2_balance, w1["co2"], w_co2_trial) J_co2 = J_co2_temp + J_co2_hum + J_co2_co2 # Put all Jacobians together J_all = J_mom + J_energy + J_water + J_co2 # Lower algebra symbols and apply derivatives up to terminals # This is needed for the Replacer to work properly preserve_geometry_types = (ufl.CellVolume, ufl.FacetArea) J_all = ufl.algorithms.apply_algebra_lowering.apply_algebra_lowering(J_all) J_all = ufl.algorithms.apply_derivatives.apply_derivatives(J_all) J_all = ufl.algorithms.apply_geometry_lowering.apply_geometry_lowering( J_all, preserve_geometry_types) J_all = ufl.algorithms.apply_derivatives.apply_derivatives(J_all) J_all = ufl.algorithms.apply_geometry_lowering.apply_geometry_lowering( J_all, preserve_geometry_types) J_all = ufl.algorithms.apply_derivatives.apply_derivatives(J_all) J = extract_blocks(J_all, [w_displ_test, w_temp_test, w_phi_test, w_co2_test], [w_displ_trial, w_temp_trial, w_phi_trial, w_co2_trial]) J[0][0]._signature = "full" if not damage_off else "dmgoff" # Just make sure these are really empty Forms assert len(J[1][0].arguments()) == 0 assert len(J[2][0].arguments()) == 0 assert len(J[3][0].arguments()) == 0 F = [-mom_balance, -energy_balance, -water_balance, -co2_balance] rank = MPI.COMM_WORLD.rank if rank == 0: logger.info("Compiling tangents J...") J_compiled = [ Form(J[0][0]), [[Form(J[i][j]) for j in range(1, 4)] for i in range(1, 4)] ] if rank == 0: logger.info("Compiling residuals F...") F_compiled = [Form(F[0]), [Form(F[i]) for i in range(1, 4)]] expr = OrderedDict() eta_dash1 = mps.eta_dash(iv0["eta_dash"], dt, w1["temp"], w1["phi"]) expr["eta_dash"] = (eta_dash1, iv0["eta_dash"].function_space.ufl_element()) expr["caco3"] = (iv0["caco3"] + dt * 24 * 60 * 60 * dot_caco3, iv0["caco3"].function_space.ufl_element()) expr["eps_cr_kel"] = (iv0["eps_cr_kel"] + deps_cr_kel, iv0["eps_cr_kel"].function_space.ufl_element()) expr["eps_cr_dash"] = (iv0["eps_cr_dash"] + deps_cr_dash, iv0["eps_cr_dash"].function_space.ufl_element()) expr["eps_sh_dr"] = (iv0["eps_sh_dr"] + deps_sh_dr, iv0["eps_sh_dr"].function_space.ufl_element()) expr["eps_th"] = (iv0["eps_th"] + deps_th, iv0["eps_th"].function_space.ufl_element()) expr["sigma"] = (iv0["sigma"] + mech.stress(E_kelv, deps_el), iv0["sigma"].function_space.ufl_element()) expr["eps_eqv"] = (eps_eqv, iv0["eps_eqv"].function_space.ufl_element()) expr["dmg"] = (dmg, iv0["dmg"].function_space.ufl_element()) for i in range(mps.M): expr[f"gamma_{i}"] = (lambda_cr[i] * (iv1["sigma"] - iv0["sigma"]) + (beta_cr[i]) * gamma0[i], gamma0[i].function_space.ufl_element()) expr_compiled = OrderedDict() for name, item in expr.items(): if rank == 0: logger.info(f"Compiling expressions for {name}...") expr_compiled[name] = CompiledExpression(item[0], item[1]) if rank == 0: logger.info(f"[Timer] UFL forms setup and compilation: {time() - t0}") return J_compiled, F_compiled, expr_compiled
def C_map(A): """unit compliance tensor mapping stress -> strain.""" return -lambda_ / (2.0 * mu * (3.0 * lambda_ + 2.0 * mu) ) * ufl.tr(A) * ufl.Identity(3) + 1.0 / (2 * mu) * A
def tangential_proj(u, n): """ See for instance: https://link.springer.com/content/pdf/10.1023/A:1022235512626.pdf """ return (ufl.Identity(u.ufl_shape[0]) - ufl.outer(n, n)) * u
def sigma(w, gdim): return 2.0 * mu * ufl.sym(grad(w)) + lmbda * ufl.tr( grad(w)) * ufl.Identity(gdim)
def test_mixed_element(cell_type, ghost_mode): N = 4 mesh = dolfinx.mesh.create_unit_square( MPI.COMM_WORLD, N, N, cell_type=cell_type, ghost_mode=ghost_mode) # Inlet velocity Dirichlet BC bc_facets = dolfinx.mesh.locate_entities_boundary( mesh, mesh.topology.dim - 1, lambda x: np.isclose(x[0], 0.0)) other_facets = dolfinx.mesh.locate_entities_boundary( mesh, mesh.topology.dim - 1, lambda x: np.isclose(x[0], 1.0)) arg_sort = np.argsort(other_facets) mt = dolfinx.mesh.meshtags(mesh, mesh.topology.dim - 1, other_facets[arg_sort], np.full_like(other_facets, 1)) # Rotate the mesh to induce more interesting slip BCs th = np.pi / 4.0 rot = np.array([[np.cos(th), -np.sin(th)], [np.sin(th), np.cos(th)]]) gdim = mesh.geometry.dim mesh.geometry.x[:, :gdim] = (rot @ mesh.geometry.x[:, :gdim].T).T # Create the function space Ve = ufl.VectorElement("Lagrange", mesh.ufl_cell(), 2) Qe = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), 1) V = dolfinx.fem.FunctionSpace(mesh, Ve) Q = dolfinx.fem.FunctionSpace(mesh, Qe) W = dolfinx.fem.FunctionSpace(mesh, Ve * Qe) inlet_velocity = dolfinx.fem.Function(V) inlet_velocity.interpolate( lambda x: np.zeros((mesh.geometry.dim, x[0].shape[0]), dtype=np.double)) inlet_velocity.x.scatter_forward() # -- Nested assembly dofs = dolfinx.fem.locate_dofs_topological(V, 1, bc_facets) bc1 = dolfinx.fem.dirichletbc(inlet_velocity, dofs) # Collect Dirichlet boundary conditions bcs = [bc1] mpc_v = dolfinx_mpc.MultiPointConstraint(V) n_approx = dolfinx_mpc.utils.create_normal_approximation(V, mt, 1) mpc_v.create_slip_constraint(V, (mt, 1), n_approx, bcs=bcs) mpc_v.finalize() mpc_q = dolfinx_mpc.MultiPointConstraint(Q) mpc_q.finalize() f = dolfinx.fem.Constant(mesh, PETSc.ScalarType((0, 0))) (u, p) = ufl.TrialFunction(V), ufl.TrialFunction(Q) (v, q) = ufl.TestFunction(V), ufl.TestFunction(Q) a00 = ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx a01 = - ufl.inner(p, ufl.div(v)) * ufl.dx a10 = - ufl.inner(ufl.div(u), q) * ufl.dx a11 = None L0 = ufl.inner(f, v) * ufl.dx L1 = ufl.inner( dolfinx.fem.Constant(mesh, PETSc.ScalarType(0.0)), q) * ufl.dx n = ufl.FacetNormal(mesh) g_tau = ufl.as_vector((0.0, 0.0)) ds = ufl.Measure("ds", domain=mesh, subdomain_data=mt, subdomain_id=1) a00 -= ufl.inner(ufl.outer(n, n) * ufl.dot(ufl.grad(u), n), v) * ds a01 -= ufl.inner(ufl.outer(n, n) * ufl.dot( - p * ufl.Identity(u.ufl_shape[0]), n), v) * ds L0 += ufl.inner(g_tau, v) * ds a_nest = dolfinx.fem.form(((a00, a01), (a10, a11))) L_nest = dolfinx.fem.form((L0, L1)) # Assemble MPC nest matrix A_nest = dolfinx_mpc.create_matrix_nest(a_nest, [mpc_v, mpc_q]) dolfinx_mpc.assemble_matrix_nest(A_nest, a_nest, [mpc_v, mpc_q], bcs) A_nest.assemble() # Assemble original nest matrix A_org_nest = dolfinx.fem.petsc.assemble_matrix_nest(a_nest, bcs) A_org_nest.assemble() # MPC nested rhs b_nest = dolfinx_mpc.create_vector_nest(L_nest, [mpc_v, mpc_q]) dolfinx_mpc.assemble_vector_nest(b_nest, L_nest, [mpc_v, mpc_q]) dolfinx.fem.petsc.apply_lifting_nest(b_nest, a_nest, bcs) for b_sub in b_nest.getNestSubVecs(): b_sub.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE) bcs0 = dolfinx.fem.bcs_by_block( dolfinx.fem.extract_function_spaces(L_nest), bcs) dolfinx.fem.petsc.set_bc_nest(b_nest, bcs0) # Original dolfinx rhs b_org_nest = dolfinx.fem.petsc.assemble_vector_nest(L_nest) dolfinx.fem.petsc.apply_lifting_nest(b_org_nest, a_nest, bcs) for b_sub in b_org_nest.getNestSubVecs(): b_sub.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE) dolfinx.fem.petsc.set_bc_nest(b_org_nest, bcs0) # -- Monolithic assembly dofs = dolfinx.fem.locate_dofs_topological((W.sub(0), V), 1, bc_facets) bc1 = dolfinx.fem.dirichletbc(inlet_velocity, dofs, W.sub(0)) bcs = [bc1] V, V_to_W = W.sub(0).collapse() mpc_vq = dolfinx_mpc.MultiPointConstraint(W) n_approx = dolfinx_mpc.utils.create_normal_approximation(V, mt, 1) mpc_vq.create_slip_constraint(W.sub(0), (mt, 1), n_approx, bcs=bcs) mpc_vq.finalize() f = dolfinx.fem.Constant(mesh, PETSc.ScalarType((0, 0))) (u, p) = ufl.TrialFunctions(W) (v, q) = ufl.TestFunctions(W) a = ( ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx - ufl.inner(p, ufl.div(v)) * ufl.dx - ufl.inner(ufl.div(u), q) * ufl.dx ) L = ufl.inner(f, v) * ufl.dx + ufl.inner( dolfinx.fem.Constant(mesh, PETSc.ScalarType(0.0)), q) * ufl.dx # No prescribed shear stress n = ufl.FacetNormal(mesh) g_tau = ufl.as_vector((0.0, 0.0)) ds = ufl.Measure("ds", domain=mesh, subdomain_data=mt, subdomain_id=1) # Terms due to slip condition # Explained in for instance: https://arxiv.org/pdf/2001.10639.pdf a -= ufl.inner(ufl.outer(n, n) * ufl.dot(ufl.grad(u), n), v) * ds a -= ufl.inner(ufl.outer(n, n) * ufl.dot( - p * ufl.Identity(u.ufl_shape[0]), n), v) * ds L += ufl.inner(g_tau, v) * ds a, L = dolfinx.fem.form(a), dolfinx.fem.form(L) # Assemble LHS matrix and RHS vector A = dolfinx_mpc.assemble_matrix(a, mpc_vq, bcs) A.assemble() A_org = dolfinx.fem.petsc.assemble_matrix(a, bcs) A_org.assemble() b = dolfinx_mpc.assemble_vector(L, mpc_vq) b_org = dolfinx.fem.petsc.assemble_vector(L) # Set Dirichlet boundary condition values in the RHS dolfinx_mpc.apply_lifting(b, [a], [bcs], mpc_vq) b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE) dolfinx.fem.petsc.set_bc(b, bcs) dolfinx.fem.petsc.apply_lifting(b_org, [a], [bcs]) b_org.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE) dolfinx.fem.petsc.set_bc(b_org, bcs) # -- Verification def nest_matrix_norm(A): assert A.getType() == "nest" nrows, ncols = A.getNestSize() sub_A = [A.getNestSubMatrix(row, col) for row in range(nrows) for col in range(ncols)] return sum(map(lambda A_: A_.norm()**2 if A_ else 0.0, sub_A))**0.5 # -- Ensure monolithic and nest matrices are the same assert np.isclose(nest_matrix_norm(A_nest), A.norm())