Пример #1
0
def test_subdomains(compile_args):
    cell = ufl.triangle
    element = ufl.FiniteElement("Lagrange", cell, 1)
    u, v = ufl.TrialFunction(element), ufl.TestFunction(element)
    a0 = ufl.inner(u, v) * ufl.dx + ufl.inner(u, v) * ufl.dx(2)
    a1 = ufl.inner(u, v) * ufl.dx(2) + ufl.inner(u, v) * ufl.dx
    a2 = ufl.inner(u, v) * ufl.dx(2) + ufl.inner(u, v) * ufl.dx(1)
    a3 = ufl.inner(u, v) * ufl.ds(210) + ufl.inner(u, v) * ufl.ds(0)
    forms = [a0, a1, a2, a3]
    compiled_forms, module, code = ffcx.codegeneration.jit.compile_forms(
        forms,
        parameters={'scalar_type': 'double'},
        cffi_extra_compile_args=compile_args)

    for f, compiled_f in zip(forms, compiled_forms):
        assert compiled_f.rank == len(f.arguments())

    form0 = compiled_forms[0]
    ids = form0.integral_ids(module.lib.cell)
    assert ids[0] == -1 and ids[1] == 2

    form1 = compiled_forms[1]
    ids = form1.integral_ids(module.lib.cell)
    assert ids[0] == -1 and ids[1] == 2

    form2 = compiled_forms[2]
    ids = form2.integral_ids(module.lib.cell)
    assert ids[0] == 1 and ids[1] == 2

    form3 = compiled_forms[3]
    assert form3.num_integrals(module.lib.cell) == 0

    ids = form3.integral_ids(module.lib.exterior_facet)
    assert ids[0] == 0 and ids[1] == 210
Пример #2
0
def test_additivity(mode):
    mesh = create_unit_square(MPI.COMM_WORLD, 12, 12, ghost_mode=mode)
    V = FunctionSpace(mesh, ("Lagrange", 1))

    f1 = Function(V)
    f2 = Function(V)
    f3 = Function(V)
    f1.x.array[:] = 1.0
    f2.x.array[:] = 2.0
    f3.x.array[:] = 3.0
    j1 = ufl.inner(f1, f1) * ufl.dx(mesh)
    j2 = ufl.inner(f2, f2) * ufl.ds(mesh)
    j3 = ufl.inner(ufl.avg(f3), ufl.avg(f3)) * ufl.dS(mesh)

    # Assemble each scalar form separately
    J1 = mesh.comm.allreduce(assemble_scalar(form(j1)), op=MPI.SUM)
    J2 = mesh.comm.allreduce(assemble_scalar(form(j2)), op=MPI.SUM)
    J3 = mesh.comm.allreduce(assemble_scalar(form(j3)), op=MPI.SUM)

    # Sum forms and assemble the result
    J12 = mesh.comm.allreduce(assemble_scalar(form(j1 + j2)), op=MPI.SUM)
    J13 = mesh.comm.allreduce(assemble_scalar(form(j1 + j3)), op=MPI.SUM)
    J23 = mesh.comm.allreduce(assemble_scalar(form(j2 + j3)), op=MPI.SUM)
    J123 = mesh.comm.allreduce(assemble_scalar(form(j1 + j2 + j3)), op=MPI.SUM)

    # Compare assembled values
    assert (J1 + J2) == pytest.approx(J12)
    assert (J1 + J3) == pytest.approx(J13)
    assert (J2 + J3) == pytest.approx(J23)
    assert (J1 + J2 + J3) == pytest.approx(J123)
Пример #3
0
def test_facet_integral(cell_type):
    """Test that the integral of a function over a facet is correct"""
    for count in range(5):
        mesh = unit_cell(cell_type)
        tdim = mesh.topology.dim

        V = FunctionSpace(mesh, ("Lagrange", 2))
        v = Function(V)

        map_f = mesh.topology.index_map(tdim - 1)
        num_facets = map_f.size_local + map_f.num_ghosts
        indices = np.arange(0, num_facets)
        values = np.arange(0, num_facets, dtype=np.intc)
        marker = MeshTags(mesh, tdim - 1, indices, values)

        # Functions that will have the same integral over each facet
        if cell_type == CellType.triangle:
            root = 3 ** 0.25  # 4th root of 3
            v.interpolate(lambda x: (x[0] - 1 / root) ** 2 + (x[1] - root / 3) ** 2)
        elif cell_type == CellType.quadrilateral:
            v.interpolate(lambda x: x[0] * (1 - x[0]) + x[1] * (1 - x[1]))
        elif cell_type == CellType.tetrahedron:
            s = 2 ** 0.5 * 3 ** (1 / 3)  # side length
            v.interpolate(lambda x: (x[0] - s / 2) ** 2 + (x[1] - s / 2 / np.sqrt(3)) ** 2
                          + (x[2] - s * np.sqrt(2 / 3) / 4) ** 2)
        elif cell_type == CellType.hexahedron:
            v.interpolate(lambda x: x[0] * (1 - x[0]) + x[1] * (1 - x[1]) + x[2] * (1 - x[2]))

        # assert that the integral of these functions over each face are equal
        out = []
        for j in range(num_facets):
            a = v * ds(subdomain_data=marker, subdomain_id=j)
            result = fem.assemble_scalar(a)
            out.append(result)
            assert np.isclose(result, out[0])
Пример #4
0
def test_additivity(mode):
    mesh = dolfinx.UnitSquareMesh(MPI.COMM_WORLD, 12, 12, ghost_mode=mode)
    V = dolfinx.FunctionSpace(mesh, ("CG", 1))

    f1 = dolfinx.Function(V)
    f2 = dolfinx.Function(V)
    f3 = dolfinx.Function(V)
    with f1.vector.localForm() as f1_local:
        f1_local.set(1.0)
    with f2.vector.localForm() as f2_local:
        f2_local.set(2.0)
    with f3.vector.localForm() as f3_local:
        f3_local.set(3.0)
    j1 = ufl.inner(f1, f1) * ufl.dx(mesh)
    j2 = ufl.inner(f2, f2) * ufl.ds(mesh)
    j3 = ufl.inner(ufl.avg(f3), ufl.avg(f3)) * ufl.dS(mesh)

    # Assemble each scalar form separately
    J1 = mesh.mpi_comm().allreduce(dolfinx.fem.assemble_scalar(j1), op=MPI.SUM)
    J2 = mesh.mpi_comm().allreduce(dolfinx.fem.assemble_scalar(j2), op=MPI.SUM)
    J3 = mesh.mpi_comm().allreduce(dolfinx.fem.assemble_scalar(j3), op=MPI.SUM)

    # Sum forms and assemble the result
    J12 = mesh.mpi_comm().allreduce(dolfinx.fem.assemble_scalar(j1 + j2), op=MPI.SUM)
    J13 = mesh.mpi_comm().allreduce(dolfinx.fem.assemble_scalar(j1 + j3), op=MPI.SUM)
    J23 = mesh.mpi_comm().allreduce(dolfinx.fem.assemble_scalar(j2 + j3), op=MPI.SUM)
    J123 = mesh.mpi_comm().allreduce(dolfinx.fem.assemble_scalar(j1 + j2 + j3), op=MPI.SUM)

    # Compare assembled values
    assert (J1 + J2) == pytest.approx(J12)
    assert (J1 + J3) == pytest.approx(J13)
    assert (J2 + J3) == pytest.approx(J23)
    assert (J1 + J2 + J3) == pytest.approx(J123)
Пример #5
0
def test_facet_normals(cell_type):
    """Test that FacetNormal is outward facing"""
    for count in range(5):
        mesh = unit_cell(cell_type)
        tdim = mesh.topology.dim

        V = VectorFunctionSpace(mesh, ("Lagrange", 1))
        normal = FacetNormal(mesh)
        v = Function(V)

        map_f = mesh.topology.index_map(tdim - 1)
        num_facets = map_f.size_local + map_f.num_ghosts
        indices = np.arange(0, num_facets)
        values = np.arange(0, num_facets, dtype=np.intc)
        marker = MeshTags(mesh, tdim - 1, indices, values)

        # For each facet, check that the inner product of the normal and
        # the vector that has a positive normal component on only that facet
        # is positive
        for i in range(num_facets):
            if cell_type == CellType.interval:
                co = mesh.geometry.x[i]
                v.interpolate(lambda x: x[0] - co[0])
            if cell_type == CellType.triangle:
                co = mesh.geometry.x[i]
                # Vector function that is zero at `co` and points away from `co`
                # so that there is no normal component on two edges and the integral
                # over the other edge is 1
                v.interpolate(lambda x: ((x[0] - co[0]) / 2,
                                         (x[1] - co[1]) / 2))
            elif cell_type == CellType.tetrahedron:
                co = mesh.geometry.x[i]
                # Vector function that is zero at `co` and points away from `co`
                # so that there is no normal component on three faces and the integral
                # over the other edge is 1
                v.interpolate(lambda x: ((x[0] - co[0]) / 3, (x[1] - co[1]) /
                                         3, (x[2] - co[2]) / 3))
            elif cell_type == CellType.quadrilateral:
                # function that is 0 on one edge and points away from that edge
                # so that there is no normal component on three edges
                v.interpolate(lambda x: tuple(x[j] - i % 2 if j == i // 2 else
                                              0 * x[j] for j in range(2)))
            elif cell_type == CellType.hexahedron:
                # function that is 0 on one face and points away from that face
                # so that there is no normal component on five faces
                v.interpolate(lambda x: tuple(x[j] - i % 2 if j == i // 3 else
                                              0 * x[j] for j in range(3)))

            # assert that the integrals these functions dotted with the normal over a face
            # is 1 on one face and 0 on the others
            ones = 0
            for j in range(num_facets):
                a = inner(v, normal) * ds(subdomain_data=marker,
                                          subdomain_id=j)
                result = fem.assemble_scalar(a)
                if np.isclose(result, 1):
                    ones += 1
                else:
                    assert np.isclose(result, 0)
            assert ones == 1
Пример #6
0
    def robin_bcs(self, v, v_old):

        w, w_old = as_ufl(0), as_ufl(0)

        for r in self.bc_dict['robin']:

            if r['type'] == 'dashpot':

                if r['dir'] == 'xyz':

                    for i in range(len(r['id'])):

                        ds_ = ds(
                            subdomain_data=self.io.mt_b1,
                            subdomain_id=r['id'][i],
                            metadata={'quadrature_degree': self.quad_degree})

                        w += self.vf.deltaP_ext_robin_dashpot(
                            v, r['visc'], ds_)
                        w_old += self.vf.deltaP_ext_robin_dashpot(
                            v_old, r['visc'], ds_)

                elif r['dir'] == 'normal':  # reference normal

                    for i in range(len(r['id'])):

                        ds_ = ds(
                            subdomain_data=self.io.mt_b1,
                            subdomain_id=r['id'][i],
                            metadata={'quadrature_degree': self.quad_degree})

                        w += self.vf.deltaP_ext_robin_dashpot_normal(
                            v, r['visc'], ds_)
                        w_old += self.vf.deltaP_ext_robin_dashpot_normal(
                            v_old, r['visc'], ds_)

                else:
                    raise NameError("Unknown dir option for Robin BC!")

            else:
                raise NameError("Unknown type option for Robin BC!")

        return w, w_old
Пример #7
0
def test_subdomains(compile_args):
    cell = ufl.triangle
    element = ufl.FiniteElement("Lagrange", cell, 1)
    u, v = ufl.TrialFunction(element), ufl.TestFunction(element)
    a0 = ufl.inner(u, v) * ufl.dx + ufl.inner(u, v) * ufl.dx(2)
    a1 = ufl.inner(u, v) * ufl.dx(2) + ufl.inner(u, v) * ufl.dx
    a2 = ufl.inner(u, v) * ufl.dx(2) + ufl.inner(u, v) * ufl.dx(1)
    a3 = ufl.inner(u, v) * ufl.ds(210) + ufl.inner(u, v) * ufl.ds(0)
    forms = [a0, a1, a2, a3]
    compiled_forms, module = ffcx.codegeneration.jit.compile_forms(
        forms,
        parameters={'scalar_type': 'double'},
        cffi_extra_compile_args=compile_args)

    for f, compiled_f in zip(forms, compiled_forms):
        assert compiled_f.rank == len(f.arguments())

    ffi = cffi.FFI()

    form0 = compiled_forms[0][0]
    ids = np.zeros(form0.num_cell_integrals, dtype=np.int32)
    form0.get_cell_integral_ids(ffi.cast('int *', ids.ctypes.data))
    assert ids[0] == -1 and ids[1] == 2

    form1 = compiled_forms[1][0]
    ids = np.zeros(form1.num_cell_integrals, dtype=np.int32)
    form1.get_cell_integral_ids(ffi.cast('int *', ids.ctypes.data))
    assert ids[0] == -1 and ids[1] == 2

    form2 = compiled_forms[2][0]
    ids = np.zeros(form2.num_cell_integrals, dtype=np.int32)
    form2.get_cell_integral_ids(ffi.cast('int *', ids.ctypes.data))
    assert ids[0] == 1 and ids[1] == 2

    form3 = compiled_forms[3][0]
    ids = np.zeros(form3.num_cell_integrals, dtype=np.int32)
    form3.get_cell_integral_ids(ffi.cast('int *', ids.ctypes.data))
    assert len(ids) == 0
    ids = np.zeros(form3.num_exterior_facet_integrals, dtype=np.int32)
    form3.get_exterior_facet_integral_ids(ffi.cast('int *', ids.ctypes.data))
    assert ids[0] == 0 and ids[1] == 210
Пример #8
0
    def error_indicators(self):
        """
        Generate and return linear form defining error indicators
        """
        # Extract these to increase readability
        R_T = self._R_T
        R_dT = self._R_dT
        z = self._Ez_h
        z_h = self._z_h

        # Define linear form for computing error indicators
        v = self.module.TestFunction(self._DG0)
        eta_T = (v * inner(R_T, z - z_h) * dx(self.domain) +
                 avg(v)*(inner(R_dT('+'), (z - z_h)('+')) +
                         inner(R_dT('-'), (z - z_h)('-'))) * dS(self.domain) +
                 v * inner(R_dT, z - z_h) * ds(self.domain))

        return eta_T
Пример #9
0
    def facet_residual(self):
        """
        Generate and return (bilinear, linear) forms defining linear
        variational problem for the strong facet residual(s)
        """
        # Define trial and test functions for the facet residuals on
        # discontinuous version of primal trial space
        R_e = self.module.TrialFunction(self._dV)
        v = self.module.TestFunction(self._dV)

        # Extract original test function in the weak residual
        v_h = self.weak_residual.arguments()[0]

        # Define forms defining linear variational problem for facet
        # residual
        v_e = self._b_e*v
        a_R_dT = ((inner(v_e('+'), R_e('+')) + inner(v_e('-'), R_e('-')))*dS(self.domain)
                  + inner(v_e, R_e)*ds(self.domain))
        L_R_dT = (replace(self.weak_residual, {v_h: v_e})
                  - inner(v_e, self._R_T)*dx(self.domain))

        return (a_R_dT, L_R_dT)
Пример #10
0
    def facet_residual(self):
        """
        Generate and return (bilinear, linear) forms defining linear
        variational problem for the strong facet residual(s)
        """
        # Define trial and test functions for the facet residuals on
        # discontinuous version of primal trial space
        R_e = self.module.TrialFunction(self._dV)
        v = self.module.TestFunction(self._dV)

        # Extract original test function in the weak residual
        v_h = self.weak_residual.arguments()[0]

        # Define forms defining linear variational problem for facet
        # residual
        v_e = self._b_e * v
        a_R_dT = ((inner(v_e('+'), R_e('+')) + inner(v_e('-'), R_e('-'))) *
                  dS(self.domain) + inner(v_e, R_e) * ds(self.domain))
        L_R_dT = (replace(self.weak_residual, {v_h: v_e}) -
                  inner(v_e, self._R_T) * dx(self.domain))

        return (a_R_dT, L_R_dT)
Пример #11
0
def Mesh(arg, **kwargs):
    """
    Overload Firedrake's ``Mesh`` constructor to
    endow the output mesh with useful quantities.

    The following quantities are computed by default:
        * cell size;
        * facet area.

    The argument and keyword arguments are passed to
    Firedrake's ``Mesh`` constructor, modified so
    that the argument could also be a mesh.
    """
    try:
        mesh = firedrake.Mesh(arg, **kwargs)
    except TypeError:
        mesh = firedrake.Mesh(arg.coordinates, **kwargs)
    P0 = firedrake.FunctionSpace(mesh, "DG", 0)
    P1 = firedrake.FunctionSpace(mesh, "CG", 1)
    dim = mesh.topological_dimension()

    # Facet area
    boundary_markers = sorted(mesh.exterior_facets.unique_markers)
    one = firedrake.Function(P1).assign(1.0)
    bnd_len = OrderedDict(
        {i: firedrake.assemble(one * ufl.ds(int(i))) for i in boundary_markers}
    )
    if dim == 2:
        mesh.boundary_len = bnd_len
    else:
        mesh.boundary_area = bnd_len

    # Cell size
    if dim == 2 and mesh.coordinates.ufl_element().cell() == ufl.triangle:
        mesh.delta_x = firedrake.interpolate(ufl.CellDiameter(mesh), P0)

    return mesh
    def set_variational_forms_and_jacobians(self):

        # add constant Neumann terms for large scale problem (trigger pressures)
        self.neumann_funcs = []
        w_neumann = as_ufl(0)
        for n in range(len(self.pbsmall.surface_p_ids)):

            self.neumann_funcs.append(Function(self.pblarge.Vd_scalar))

            for i in range(len(self.pbsmall.surface_p_ids[n])):

                ds_ = ds(
                    subdomain_data=self.pblarge.io.mt_b1,
                    subdomain_id=self.pbsmall.surface_p_ids[n][i],
                    metadata={'quadrature_degree': self.pblarge.quad_degree})

                # we apply the pressure onto a fixed configuration of the G&R trigger point, determined by the displacement field u_set
                # in the last G&R cycle, we assure that growth falls below a tolerance and hence the current and the set configuration coincide
                w_neumann += self.pblarge.vf.deltaW_ext_neumann_true(
                    self.pblarge.ki.J(self.pblarge.u_set),
                    self.pblarge.ki.F(self.pblarge.u_set),
                    self.neumann_funcs[-1], ds_)

        self.pblarge.weakform_u -= w_neumann
Пример #13
0
def test_facet_integral(cell_type):
    """Test that the integral of a function over a facet is correct"""
    for count in range(5):
        mesh = unit_cell(cell_type)

        V = FunctionSpace(mesh, ("Lagrange", 2))

        num_facets = mesh.num_entities(mesh.topology.dim - 1)

        v = Function(V)
        facet_function = MeshFunction("size_t", mesh, mesh.topology.dim - 1, 1)
        facet_function.values[:] = range(num_facets)

        # Functions that will have the same integral over each facet
        if cell_type == CellType.triangle:
            root = 3**0.25  # 4th root of 3
            v.interpolate(lambda x: (x[0] - 1 / root)**2 +
                          (x[1] - root / 3)**2)
        elif cell_type == CellType.quadrilateral:
            v.interpolate(lambda x: x[0] * (1 - x[0]) + x[1] * (1 - x[1]))
        elif cell_type == CellType.tetrahedron:
            s = 2**0.5 * 3**(1 / 3)  # side length
            v.interpolate(lambda x: (x[0] - s / 2)**2 +
                          (x[1] - s / 2 / np.sqrt(3))**2 +
                          (x[2] - s * np.sqrt(2 / 3) / 4)**2)
        elif cell_type == CellType.hexahedron:
            v.interpolate(lambda x: x[0] * (1 - x[0]) + x[1] *
                          (1 - x[1]) + x[2] * (1 - x[2]))

        # assert that the integral of these functions over each face are equal
        out = []
        for j in range(num_facets):
            a = v * ds(subdomain_data=facet_function, subdomain_id=j)
            result = fem.assemble_scalar(a)
            out.append(result)
            assert np.isclose(result, out[0])
Пример #14
0
def ref_elasticity(tetra: bool = True, r_lvl: int = 0, out_hdf5: h5py.File = None,
                   xdmf: bool = False, boomeramg: bool = False, kspview: bool = False, degree: int = 1):
    if tetra:
        N = 3 if degree == 1 else 2
        mesh = create_unit_cube(MPI.COMM_WORLD, N, N, N)
    else:
        N = 3
        mesh = create_unit_cube(MPI.COMM_WORLD, N, N, N, CellType.hexahedron)
    for i in range(r_lvl):
        # set_log_level(LogLevel.INFO)
        N *= 2
        if tetra:
            mesh = refine(mesh, redistribute=True)
        else:
            mesh = create_unit_cube(MPI.COMM_WORLD, N, N, N, CellType.hexahedron)
        # set_log_level(LogLevel.ERROR)
    N = degree * N
    fdim = mesh.topology.dim - 1
    V = VectorFunctionSpace(mesh, ("Lagrange", int(degree)))

    # Generate Dirichlet BC on lower boundary (Fixed)
    u_bc = Function(V)
    with u_bc.vector.localForm() as u_local:
        u_local.set(0.0)

    def boundaries(x):
        return np.isclose(x[0], np.finfo(float).eps)
    facets = locate_entities_boundary(mesh, fdim, boundaries)
    topological_dofs = locate_dofs_topological(V, fdim, facets)
    bc = dirichletbc(u_bc, topological_dofs)
    bcs = [bc]

    # Create traction meshtag
    def traction_boundary(x):
        return np.isclose(x[0], 1)
    t_facets = locate_entities_boundary(mesh, fdim, traction_boundary)
    facet_values = np.ones(len(t_facets), dtype=np.int32)
    arg_sort = np.argsort(t_facets)
    mt = meshtags(mesh, fdim, t_facets[arg_sort], facet_values[arg_sort])

    # Elasticity parameters
    E = PETSc.ScalarType(1.0e4)
    nu = 0.1
    mu = Constant(mesh, E / (2.0 * (1.0 + nu)))
    lmbda = Constant(mesh, E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu)))
    g = Constant(mesh, PETSc.ScalarType((0, 0, -1e2)))
    x = SpatialCoordinate(mesh)
    f = Constant(mesh, PETSc.ScalarType(1e4)) * \
        as_vector((0, -(x[2] - 0.5)**2, (x[1] - 0.5)**2))

    # Stress computation
    def sigma(v):
        return (2.0 * mu * sym(grad(v)) + lmbda * tr(sym(grad(v))) * Identity(len(v)))

    # Define variational problem
    u = TrialFunction(V)
    v = TestFunction(V)
    a = inner(sigma(u), grad(v)) * dx
    rhs = inner(g, v) * ds(domain=mesh, subdomain_data=mt, subdomain_id=1) + inner(f, v) * dx

    num_dofs = V.dofmap.index_map.size_global * V.dofmap.index_map_bs
    if MPI.COMM_WORLD.rank == 0:
        print("Problem size {0:d} ".format(num_dofs))

    # Generate reference matrices and unconstrained solution
    bilinear_form = form(a)
    A_org = assemble_matrix(bilinear_form, bcs)
    A_org.assemble()
    null_space_org = rigid_motions_nullspace(V)
    A_org.setNearNullSpace(null_space_org)

    linear_form = form(rhs)
    L_org = assemble_vector(linear_form)
    apply_lifting(L_org, [bilinear_form], [bcs])
    L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)
    set_bc(L_org, bcs)
    opts = PETSc.Options()
    if boomeramg:
        opts["ksp_type"] = "cg"
        opts["ksp_rtol"] = 1.0e-5
        opts["pc_type"] = "hypre"
        opts['pc_hypre_type'] = 'boomeramg'
        opts["pc_hypre_boomeramg_max_iter"] = 1
        opts["pc_hypre_boomeramg_cycle_type"] = "v"
        # opts["pc_hypre_boomeramg_print_statistics"] = 1

    else:
        opts["ksp_rtol"] = 1.0e-8
        opts["pc_type"] = "gamg"
        opts["pc_gamg_type"] = "agg"
        opts["pc_gamg_coarse_eq_limit"] = 1000
        opts["pc_gamg_sym_graph"] = True
        opts["mg_levels_ksp_type"] = "chebyshev"
        opts["mg_levels_pc_type"] = "jacobi"
        opts["mg_levels_esteig_ksp_type"] = "cg"
        opts["matptap_via"] = "scalable"
        opts["pc_gamg_square_graph"] = 2
        opts["pc_gamg_threshold"] = 0.02
    # opts["help"] = None # List all available options
    # opts["ksp_view"] = None # List progress of solver

    # Create solver, set operator and options
    solver = PETSc.KSP().create(MPI.COMM_WORLD)
    solver.setFromOptions()
    solver.setOperators(A_org)

    # Solve linear problem
    u_ = Function(V)
    start = perf_counter()
    with Timer("Ref solve"):
        solver.solve(L_org, u_.vector)
    end = perf_counter()
    u_.x.scatter_forward()

    if kspview:
        solver.view()

    it = solver.getIterationNumber()
    if out_hdf5 is not None:
        d_set = out_hdf5.get("its")
        d_set[r_lvl] = it
        d_set = out_hdf5.get("num_dofs")
        d_set[r_lvl] = num_dofs
        d_set = out_hdf5.get("solve_time")
        d_set[r_lvl, MPI.COMM_WORLD.rank] = end - start

    if MPI.COMM_WORLD.rank == 0:
        print("Refinement level {0:d}, Iterations {1:d}".format(r_lvl, it))

    # List memory usage
    mem = sum(MPI.COMM_WORLD.allgather(
        resource.getrusage(resource.RUSAGE_SELF).ru_maxrss))
    if MPI.COMM_WORLD.rank == 0:
        print("{1:d}: Max usage after trad. solve {0:d} (kb)"
              .format(mem, r_lvl))

    if xdmf:

        # Name formatting of functions
        u_.name = "u_unconstrained"
        fname = "results/ref_elasticity_{0:d}.xdmf".format(r_lvl)
        with XDMFFile(MPI.COMM_WORLD, fname, "w") as out_xdmf:
            out_xdmf.write_mesh(mesh)
            out_xdmf.write_function(u_, 0.0, "Xdmf/Domain/Grid[@Name='{0:s}'][1]".format(mesh.name))
Пример #15
0
def run_dg_test(mesh, V, degree):
    """ Manufactured Poisson problem, solving u = x[component]**n, where n is the
    degree of the Lagrange function space.
    """
    u, v = TrialFunction(V), TestFunction(V)

    # Exact solution
    x = SpatialCoordinate(mesh)
    u_exact = x[1]**degree

    # Coefficient
    k = Function(V)
    k.vector.set(2.0)
    k.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                         mode=PETSc.ScatterMode.FORWARD)

    # Source term
    f = -div(k * grad(u_exact))

    # Mesh normals and element size
    n = FacetNormal(mesh)
    h = CellDiameter(mesh)
    h_avg = (h("+") + h("-")) / 2.0

    # Penalty parameter
    alpha = 32

    dx_ = dx(metadata={"quadrature_degree": -1})
    ds_ = ds(metadata={"quadrature_degree": -1})
    dS_ = dS(metadata={"quadrature_degree": -1})

    with common.Timer("Compile forms"):
        a = inner(k * grad(u), grad(v)) * dx_ \
            - k("+") * inner(avg(grad(u)), jump(v, n)) * dS_ \
            - k("+") * inner(jump(u, n), avg(grad(v))) * dS_ \
            + k("+") * (alpha / h_avg) * inner(jump(u, n), jump(v, n)) * dS_ \
            - inner(k * grad(u), v * n) * ds_ \
            - inner(u * n, k * grad(v)) * ds_ \
            + (alpha / h) * inner(k * u, v) * ds_
        L = inner(f, v) * dx_ - inner(k * u_exact * n, grad(v)) * ds_ \
            + (alpha / h) * inner(k * u_exact, v) * ds_

    for integral in a.integrals():
        integral.metadata(
        )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(
            a)
    for integral in L.integrals():
        integral.metadata(
        )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(
            L)

    with common.Timer("Assemble vector"):
        b = assemble_vector(L)
        b.ghostUpdate(addv=PETSc.InsertMode.ADD,
                      mode=PETSc.ScatterMode.REVERSE)

    with common.Timer("Assemble matrix"):
        A = assemble_matrix(a, [])
        A.assemble()

    with common.Timer("Solve"):
        # Create LU linear solver
        solver = PETSc.KSP().create(MPI.COMM_WORLD)
        solver.setType(PETSc.KSP.Type.PREONLY)
        solver.getPC().setType(PETSc.PC.Type.LU)
        solver.setOperators(A)

        # Solve
        uh = Function(V)
        solver.solve(b, uh.vector)
        uh.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                              mode=PETSc.ScatterMode.FORWARD)

    with common.Timer("Error functional compile"):
        # Calculate error
        M = (u_exact - uh)**2 * dx
        M = fem.Form(M)

    with common.Timer("Error assembly"):
        error = mesh.mpi_comm().allreduce(assemble_scalar(M), op=MPI.SUM)

    common.list_timings(MPI.COMM_WORLD, [common.TimingType.wall])
    assert np.absolute(error) < 1.0e-14
Пример #16
0
def truth_solve(mu_unkown):
    print("Performing truth solve at mu =", mu_unkown)
    (mesh, subdomains, boundaries, restrictions) = read_mesh()
    # (mesh, subdomains, boundaries, restrictions) = create_mesh()
    dx = Measure('dx', subdomain_data=subdomains)
    ds = Measure('ds', subdomain_data=boundaries)
    W = generate_block_function_space(mesh, restrictions)

    # Test and trial functions
    block_v = BlockTestFunction(W)
    v, q = block_split(block_v)
    block_du = BlockTrialFunction(W)
    du, dp = block_split(block_du)
    block_u = BlockFunction(W)
    u, p = block_split(block_u)

    # gap
    # V2 = FunctionSpace(mesh, "CG", 1)
    # gap = Function(V2, name="Gap")

    # obstacle
    R = 0.25
    d = 0.15
    x_0 = mu_unkown[0]
    y_0 = mu_unkown[1]
    obstacle = Expression("-d+(pow(x[0]-x_0,2)+pow(x[1]-y_0, 2))/2/R", d=d, R=R , x_0 = x_0, y_0 = y_0, degree=0)

    # Constitutive parameters
    E = Constant(10.0)
    nu = Constant(0.3)
    mu, lmbda = Constant(E/(2*(1 + nu))), Constant(E*nu/((1 + nu)*(1 - 2*nu)))

    B  = Constant((0.0, 0.0, 0.0))      # Body force per unit volume
    T  = Constant((0.0, 0.0, 0.0))      # Traction force on the boundary

    # Kinematics
    # -----------------------------------------------------------------------------
    mesh_dim = mesh.topology().dim()                    # Spatial dimension
    I = Identity(mesh_dim)                 # Identity tensor
    F = I + grad(u)                 # Deformation gradient
    C = F.T*F                       # Right Cauchy-Green tensor
    J = det(F)                      # 3rd invariant of the deformation tensor

    # Strain function
    def P(u):                       # P = dW/dF:
        return mu*(F - inv(F.T)) + lmbda*ln(J)*inv(F.T)
    def eps(v):
        return sym(grad(v))
    def sigma(v):
        return lmbda*tr(eps(v))*Identity(3) + 2.0*mu*eps(v)
    # Definition of The Mackauley bracket <x>+
    def ppos(x):
        return (x+abs(x))/2.
    # Define the augmented lagrangian
    def aug_l(x):
        return x + pen*(obstacle-u[2])

    pen = Constant(1e4)

    # Boundary conditions
    # bottom_bc = DirichletBC(W.sub(0), Constant((0., 0., 0.)), boundaries, 2)
    # left_bc = DirichletBC(W.sub(0), Constant((0., 0., 0.)), boundaries, 3)
    # right_bc = DirichletBC(W.sub(0), Constant((0., 0., 0.)), boundaries, 4)
    # front_bc = DirichletBC(W.sub(0), Constant((0., 0., 0.)), boundaries, 5)
    # back_bc = DirichletBC(W.sub(0), Constant((0., 0., 0.)), boundaries, 6)
    # # sym_x_bc = DirichletBC(W.sub(0).sub(0), Constant(0.), boundaries, 2)
    # # sym_y_bc = DirichletBC(W.sub(0).sub(1), Constant(0.), boundaries, 3)
    # # bc = BlockDirichletBC([bottom_bc, sym_x_bc, sym_y_bc])
    # bc = BlockDirichletBC([bottom_bc, left_bc, right_bc, front_bc, back_bc])

    bottom_bc = DirichletBC(W.sub(0), Constant((0., 0., 0.)), boundaries, 2)
    left_bc_x = DirichletBC(W.sub(0).sub(0), Constant(0.), boundaries, 3)
    left_bc_y = DirichletBC(W.sub(0).sub(1), Constant(0.), boundaries, 3)
    right_bc_x = DirichletBC(W.sub(0).sub(0), Constant(0.), boundaries, 4)
    right_bc_y = DirichletBC(W.sub(0).sub(1), Constant(0.), boundaries, 4)
    front_bc_x = DirichletBC(W.sub(0).sub(0), Constant(0.), boundaries, 5)
    front_bc_y = DirichletBC(W.sub(0).sub(1), Constant(0.), boundaries, 5)
    back_bc_x = DirichletBC(W.sub(0).sub(0), Constant(0.), boundaries, 6)
    back_bc_y = DirichletBC(W.sub(0).sub(1), Constant(0.), boundaries, 6)
    # sym_x_bc = DirichletBC(W.sub(0).sub(0), Constant(0.), boundaries, 2)
    # sym_y_bc = DirichletBC(W.sub(0).sub(1), Constant(0.), boundaries, 3)
    # bc = BlockDirichletBC([bottom_bc, sym_x_bc, sym_y_bc])
    bc = BlockDirichletBC([bottom_bc, left_bc_x, left_bc_y, \
                           right_bc_x, right_bc_y, front_bc_x, front_bc_y, \
                           back_bc_x, back_bc_y])

    # Variational forms
    # F = inner(sigma(u), eps(v))*dx + pen*dot(v[2], ppos(u[2]-obstacle))*ds(1)

    # F = [inner(sigma(u), eps(v))*dx - aug_l(l)*v[2]*ds(1) + ppos(aug_l(l))*v[2]*ds(1),
    #     (obstacle-u[2])*v*ds(1) - (1/pen)*ppos(aug_l(l))*v*ds(1)]

    # F_a = inner(sigma(u), eps(v))*dx
    # F_b = - aug_l(p)*v[2]*ds(1) + ppos(aug_l(p))*v[2]*ds(1)
    # F_c = (obstacle-u[2])*q*ds(1)
    # F_d = - (1/pen)*ppos(aug_l(p))*q*ds(1)
    #
    # block_F = [[F_a, F_b],
    #            [F_c, F_d]]

    F_a = inner(P(u), grad(v))*dx - dot(B, v)*dx - dot(T, v)*ds \
        - aug_l(p)*v[2]*ds(1) + ppos(aug_l(p))*v[2]*ds(1)

    F_b = (obstacle-u[2])*q*ds(1) - (1/pen)*ppos(aug_l(p))*q*ds(1)

    block_F = [F_a,
               F_b]
    J = block_derivative(block_F, block_u, block_du)

    # Setup solver
    problem = BlockNonlinearProblem(block_F, block_u, bc, J)
    solver = BlockPETScSNESSolver(problem)
    solver.parameters.update({
        "linear_solver": "mumps",
        "absolute_tolerance": 1E-4,
        "relative_tolerance": 1E-4,
        "maximum_iterations": 50,
        "report": True,
        "error_on_nonconvergence": True
    })

    # solver.parameters.update({
    #     "linear_solver": "cg",
    #     "absolute_tolerance": 1E-4,
    #     "relative_tolerance": 1E-4,
    #     "maximum_iterations": 50,
    #     "report": True,
    #     "error_on_nonconvergence": True
    # })

    # Perform a fake loop over time. Note how up will store the solution at the last time.
    # Q. for?
    # A. You can remove it, since your problem is stationary. The template was targeting
    #    a final application which was transient, but in which the ROM should have only
    #    described the final solution (when reaching the steady state).
    # for _ in range(2):
    #     solver.solve()
    a1 = solver.solve()
    print(a1)
        # save all the solution here as a function of time

    # Return the solution at the last time
    # Q. block_u or block
    # A. I think block_u, it will split split among the components elsewhere
    return block_u
Пример #17
0
def facet_normal_approximation(V, mt: _cpp.mesh.MeshTags_int32, mt_id: int, tangent=False, jit_params: dict = {},
                               form_compiler_params: dict = {}):
    """
    Approximate the facet normal by projecting it into the function space for a set of facets

    Parameters
    ----------
    V
        The function space to project into
    mt
        The `dolfinx.mesh.MeshTagsMetaClass` containing facet markers
    mt_id
        The id for the facets in `mt` we want to represent the normal at
    tangent
        To approximate the tangent to the facet set this flag to `True`
    jit_params
        Parameters used in CFFI JIT compilation of C code generated by FFCx.
        See `DOLFINx-documentation <https://github.com/FEniCS/dolfinx/blob/main/python/dolfinx/jit.py#L22-L37>`
        for all available parameters. Takes priority over all other parameter values.
    form_compiler_params
        Parameters used in FFCx compilation of this form. Run `ffcx - -help` at
        the commandline to see all available options. Takes priority over all
        other parameter values, except for `scalar_type` which is determined by
        DOLFINx.
"""
    timer = _common.Timer("~MPC: Facet normal projection")
    comm = V.mesh.comm
    n = ufl.FacetNormal(V.mesh)
    nh = _fem.Function(V)
    u, v = ufl.TrialFunction(V), ufl.TestFunction(V)
    ds = ufl.ds(domain=V.mesh, subdomain_data=mt, subdomain_id=mt_id)
    if tangent:
        if V.mesh.geometry.dim == 1:
            raise ValueError("Tangent not defined for 1D problem")
        elif V.mesh.geometry.dim == 2:
            a = ufl.inner(u, v) * ds
            L = ufl.inner(ufl.as_vector([-n[1], n[0]]), v) * ds
        else:
            def tangential_proj(u, n):
                """
                See for instance:
                https://link.springer.com/content/pdf/10.1023/A:1022235512626.pdf
                """
                return (ufl.Identity(u.ufl_shape[0]) - ufl.outer(n, n)) * u
            c = _fem.Constant(V.mesh, [1, 1, 1])
            a = ufl.inner(u, v) * ds
            L = ufl.inner(tangential_proj(c, n), v) * ds
    else:
        a = (ufl.inner(u, v) * ds)
        L = ufl.inner(n, v) * ds

    # Find all dofs that are not boundary dofs
    imap = V.dofmap.index_map
    all_blocks = np.arange(imap.size_local, dtype=np.int32)
    top_blocks = _fem.locate_dofs_topological(V, V.mesh.topology.dim - 1, mt.find(mt_id))
    deac_blocks = all_blocks[np.isin(all_blocks, top_blocks, invert=True)]

    # Note there should be a better way to do this
    # Create sparsity pattern only for constraint + bc
    bilinear_form = _fem.form(a, jit_params=jit_params,
                              form_compiler_params=form_compiler_params)
    pattern = _fem.create_sparsity_pattern(bilinear_form)
    pattern.insert_diagonal(deac_blocks)
    pattern.assemble()
    u_0 = _fem.Function(V)
    u_0.vector.set(0)

    bc_deac = _fem.dirichletbc(u_0, deac_blocks)
    A = _cpp.la.petsc.create_matrix(comm, pattern)
    A.zeroEntries()

    # Assemble the matrix with all entries
    form_coeffs = _cpp.fem.pack_coefficients(bilinear_form)
    form_consts = _cpp.fem.pack_constants(bilinear_form)
    _cpp.fem.petsc.assemble_matrix(A, bilinear_form, form_consts, form_coeffs, [bc_deac])
    if bilinear_form.function_spaces[0] is bilinear_form.function_spaces[1]:
        A.assemblyBegin(PETSc.Mat.AssemblyType.FLUSH)
        A.assemblyEnd(PETSc.Mat.AssemblyType.FLUSH)
        _cpp.fem.petsc.insert_diagonal(A, bilinear_form.function_spaces[0], [bc_deac], 1.0)
    A.assemble()
    linear_form = _fem.form(L, jit_params=jit_params,
                            form_compiler_params=form_compiler_params)
    b = _fem.petsc.assemble_vector(linear_form)

    _fem.petsc.apply_lifting(b, [bilinear_form], [[bc_deac]])
    b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)
    _fem.petsc.set_bc(b, [bc_deac])

    # Solve Linear problem
    solver = PETSc.KSP().create(MPI.COMM_WORLD)
    solver.setType("cg")
    solver.rtol = 1e-8
    solver.setOperators(A)
    solver.solve(b, nh.vector)
    nh.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD)
    timer.stop()
    return nh
Пример #18
0
def test_div_grad_then_integrate_over_cells_and_boundary():

    # Define 2D geometry
    n = 10
    mesh = RectangleMesh(Point(0.0, 0.0), Point(2.0, 3.0), 2 * n, 3 * n)

    x, y = SpatialCoordinate(mesh)
    xs = 0.1 + 0.8 * x / 2  # scaled to be within [0.1,0.9]
    #    ys = 0.1 + 0.8 * y / 3  # scaled to be within [0.1,0.9]
    n = FacetNormal(mesh)

    # Define list of expressions to test, and configure accuracies
    # these expressions are known to pass with.  The reason some
    # functions are less accurately integrated is likely that the
    # default choice of quadrature rule is not perfect
    F_list = []

    def reg(exprs, acc=10):
        for expr in exprs:
            F_list.append((expr, acc))

    # FIXME: 0*dx and 1*dx fails in the ufl-ffc-jit framework somewhere
    # reg([Constant(0.0, cell=cell)])
    # reg([Constant(1.0, cell=cell)])
    monomial_list = [x**q for q in range(2, 6)]
    reg(monomial_list)
    reg([2.3 * p + 4.5 * q for p in monomial_list for q in monomial_list])
    reg([xs**xs])
    reg(
        [xs**(xs**2)], 8
    )  # Note: Accuracies here are from 1D case, not checked against 2D results.
    reg([xs**(xs**3)], 6)
    reg([xs**(xs**4)], 2)
    # Special functions:
    reg([atan(xs)], 8)
    reg([sin(x), cos(x), exp(x)], 5)
    reg([ln(xs), pow(x, 2.7), pow(2.7, x)], 3)
    reg([asin(xs), acos(xs)], 1)
    reg([tan(xs)], 7)

    # To handle tensor algebra, make an x dependent input tensor
    # xx and square all expressions
    def reg2(exprs, acc=10):
        for expr in exprs:
            F_list.append((inner(expr, expr), acc))

    xx = as_matrix([[2 * x**2, 3 * x**3], [11 * x**5, 7 * x**4]])
    xxs = as_matrix([[2 * xs**2, 3 * xs**3], [11 * xs**5, 7 * xs**4]])
    x3v = as_vector([3 * x**2, 5 * x**3, 7 * x**4])
    cc = as_matrix([[2, 3], [4, 5]])
    reg2(
        [xx]
    )  # TODO: Make unit test for UFL from this, results in listtensor with free indices
    reg2([x3v])
    reg2([cross(3 * x3v, as_vector([-x3v[1], x3v[0], x3v[2]]))])
    reg2([xx.T])
    reg2([tr(xx)])
    reg2([det(xx)])
    reg2([dot(xx, 0.1 * xx)])
    reg2([outer(xx, xx.T)])
    reg2([dev(xx)])
    reg2([sym(xx)])
    reg2([skew(xx)])
    reg2([elem_mult(7 * xx, cc)])
    reg2([elem_div(7 * xx, xx + cc)])
    reg2([elem_pow(1e-3 * xxs, 1e-3 * cc)])
    reg2([elem_pow(1e-3 * cc, 1e-3 * xx)])
    reg2([elem_op(lambda z: sin(z) + 2, 0.03 * xx)], 2)  # pretty inaccurate...

    # FIXME: Add tests for all UFL operators:
    # These cause discontinuities and may be harder to test in the
    # above fashion:
    # 'inv', 'cofac',
    # 'eq', 'ne', 'le', 'ge', 'lt', 'gt', 'And', 'Or', 'Not',
    # 'conditional', 'sign',
    # 'jump', 'avg',
    # 'LiftingFunction', 'LiftingOperator',

    # FIXME: Test other derivatives: (but algorithms for operator
    # derivatives are the same!):
    # 'variable', 'diff',
    # 'Dx', 'grad', 'div', 'curl', 'rot', 'Dn', 'exterior_derivative',

    # Run through all operators defined above and compare integrals
    debug = 0
    if debug:
        F_list = F_list[1:]

    for F, acc in F_list:
        if debug:
            print('\n', "F:", str(F))

        # Integrate over domain and its boundary
        int_dx = assemble(div(grad(F)) * dx(mesh))  # noqa
        int_ds = assemble(dot(grad(F), n) * ds(mesh))  # noqa

        if debug:
            print(int_dx, int_ds)

        # Compare results. Using custom relative delta instead of
        # decimal digits here because some numbers are >> 1.
        delta = min(abs(int_dx), abs(int_ds)) * 10**-acc
        assert int_dx - int_ds <= delta
Пример #19
0
# Copyright (C) 2008 Anders Logg
#
# This file is part of UFL.
#
# UFL is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# UFL is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with UFL. If not, see <http://www.gnu.org/licenses/>.
#
# This example illustrates how to define a form over a
# given subdomain of a mesh, in this case a functional.
from ufl import (Coefficient, FiniteElement, TestFunction, TrialFunction, ds,
                 dx, tetrahedron)

element = FiniteElement("CG", tetrahedron, 1)

v = TestFunction(element)
u = TrialFunction(element)
f = Coefficient(element)

M = f * dx(2) + f * ds(5)
Пример #20
0
    def set_variational_forms_and_jacobians(self):

        self.cq, self.cq_old, self.dcq, self.dforce = [], [], [], []
        self.coupfuncs, self.coupfuncs_old = [], []

        if self.coupling_type == 'monolithic_lagrange':

            # Lagrange multiplier stiffness matrix (currently treated with FD!)
            self.K_lm = PETSc.Mat().createAIJ(size=(self.num_coupling_surf,
                                                    self.num_coupling_surf),
                                              bsize=None,
                                              nnz=None,
                                              csr=None,
                                              comm=self.comm)
            self.K_lm.setUp()

            # Lagrange multipliers
            self.lm, self.lm_old = self.K_lm.createVecLeft(
            ), self.K_lm.createVecLeft()

            # 3D fluxes
            self.constr, self.constr_old = [], []

        self.power_coupling, self.power_coupling_old = as_ufl(0), as_ufl(0)

        # coupling variational forms and Jacobian contributions
        for n in range(self.num_coupling_surf):

            self.pr0D = expression.template()

            self.coupfuncs.append(Function(
                self.pbs.Vd_scalar)), self.coupfuncs_old.append(
                    Function(self.pbs.Vd_scalar))
            self.coupfuncs[-1].interpolate(
                self.pr0D.evaluate), self.coupfuncs_old[-1].interpolate(
                    self.pr0D.evaluate)

            cq_, cq_old_ = as_ufl(0), as_ufl(0)
            for i in range(len(self.surface_vq_ids[n])):

                ds_vq = ds(
                    subdomain_data=self.pbs.io.mt_b1,
                    subdomain_id=self.surface_vq_ids[n][i],
                    metadata={'quadrature_degree': self.pbs.quad_degree})

                if self.coupling_params['coupling_quantity'] == 'flux':
                    assert (self.coupling_type == 'monolithic_direct')
                    cq_ += self.pbs.vf.flux(self.pbs.v, ds_vq)
                elif self.coupling_params['coupling_quantity'] == 'pressure':
                    assert (self.coupling_type == 'monolithic_lagrange')
                    cq_ += self.pbs.vf.flux(self.pbs.v, ds_vq)
                else:
                    raise NameError(
                        "Unknown coupling quantity! Choose flux or pressure!")

            self.cq.append(cq_), self.cq_old.append(cq_old_)
            self.dcq.append(derivative(self.cq[-1], self.pbs.v, self.pbs.dv))

            df_ = as_ufl(0)
            for i in range(len(self.surface_p_ids[n])):

                ds_p = ds(subdomain_data=self.pbs.io.mt_b1,
                          subdomain_id=self.surface_p_ids[n][i],
                          metadata={'quadrature_degree': self.pbs.quad_degree})
                df_ += self.pbs.timefac * self.pbs.vf.surface(ds_p)

                # add to fluid rhs contributions
                self.power_coupling += self.pbs.vf.deltaP_ext_neumann_normal(
                    self.coupfuncs[-1], ds_p)
                self.power_coupling_old += self.pbs.vf.deltaP_ext_neumann_normal(
                    self.coupfuncs_old[-1], ds_p)

            self.dforce.append(df_)

        # minus sign, since contribution to external power!
        self.pbs.weakform_u += -self.pbs.timefac * self.power_coupling - (
            1. - self.pbs.timefac) * self.power_coupling_old

        # add to fluid Jacobian
        self.pbs.jac_uu += -self.pbs.timefac * derivative(
            self.power_coupling, self.pbs.v, self.pbs.dv)

        if self.coupling_type == 'monolithic_lagrange':
            # old Lagrange multipliers - initialize with initial pressures
            self.pbf.cardvasc0D.initialize_lm(
                self.lm, self.pbf.time_params['initial_conditions'])
            self.pbf.cardvasc0D.initialize_lm(
                self.lm_old, self.pbf.time_params['initial_conditions'])
Пример #21
0
def bench_elasticity_edge(tetra: bool = True, r_lvl: int = 0, out_hdf5=None, xdmf: bool = False,
                          boomeramg: bool = False, kspview: bool = False, degree: int = 1, info: bool = False):
    N = 3
    for i in range(r_lvl):
        N *= 2
    ct = CellType.tetrahedron if tetra else CellType.hexahedron
    mesh = create_unit_cube(MPI.COMM_WORLD, N, N, N, ct)
    # Get number of unknowns on each edge

    V = VectorFunctionSpace(mesh, ("Lagrange", int(degree)))

    # Generate Dirichlet BC (Fixed)
    u_bc = Function(V)
    with u_bc.vector.localForm() as u_local:
        u_local.set(0.0)

    def boundaries(x):
        return np.isclose(x[0], np.finfo(float).eps)
    fdim = mesh.topology.dim - 1
    facets = locate_entities_boundary(mesh, fdim, boundaries)
    topological_dofs = locate_dofs_topological(V, fdim, facets)
    bc = dirichletbc(u_bc, topological_dofs)
    bcs = [bc]

    def PeriodicBoundary(x):
        return np.logical_and(np.isclose(x[0], 1), np.isclose(x[2], 0))

    def periodic_relation(x):
        out_x = np.zeros(x.shape)
        out_x[0] = x[0]
        out_x[1] = x[1]
        out_x[2] = x[2] + 1
        return out_x
    with Timer("~Elasticity: Initialize MPC"):
        edim = mesh.topology.dim - 2
        edges = locate_entities_boundary(mesh, edim, PeriodicBoundary)
        arg_sort = np.argsort(edges)
        periodic_mt = meshtags(mesh, edim, edges[arg_sort], np.full(len(edges), 2, dtype=np.int32))

        mpc = MultiPointConstraint(V)
        mpc.create_periodic_constraint_topological(V, periodic_mt, 2, periodic_relation, bcs, scale=0.5)
        mpc.finalize()

    # Create traction meshtag

    def traction_boundary(x):
        return np.isclose(x[0], 1)
    t_facets = locate_entities_boundary(mesh, fdim, traction_boundary)
    facet_values = np.ones(len(t_facets), dtype=np.int32)
    arg_sort = np.argsort(t_facets)
    mt = meshtags(mesh, fdim, t_facets[arg_sort], facet_values)

    # Elasticity parameters
    E = PETSc.ScalarType(1.0e4)
    nu = 0.1
    mu = Constant(mesh, E / (2.0 * (1.0 + nu)))
    lmbda = Constant(mesh, E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu)))
    g = Constant(mesh, PETSc.ScalarType((0, 0, -1e2)))
    x = SpatialCoordinate(mesh)
    f = Constant(mesh, PETSc.ScalarType(1e3)) * as_vector((0, -(x[2] - 0.5)**2, (x[1] - 0.5)**2))

    # Stress computation
    def epsilon(v):
        return sym(grad(v))

    def sigma(v):
        return (2.0 * mu * epsilon(v) + lmbda * tr(epsilon(v)) * Identity(len(v)))

    # Define variational problem
    u = TrialFunction(V)
    v = TestFunction(V)
    a = inner(sigma(u), grad(v)) * dx
    rhs = inner(g, v) * ds(domain=mesh, subdomain_data=mt, subdomain_id=1) + inner(f, v) * dx

    # Setup MPC system
    if info:
        log_info(f"Run {r_lvl}: Assembling matrix and vector")
    bilinear_form = form(a)
    linear_form = form(rhs)
    with Timer("~Elasticity: Assemble LHS and RHS"):
        A = assemble_matrix(bilinear_form, mpc, bcs=bcs)
        b = assemble_vector(linear_form, mpc)

    # Create nullspace for elasticity problem and assign to matrix
    null_space = rigid_motions_nullspace(mpc.function_space)
    A.setNearNullSpace(null_space)

    # Apply boundary conditions
    apply_lifting(b, [bilinear_form], [bcs], mpc)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)
    set_bc(b, bcs)

    opts = PETSc.Options()
    if boomeramg:
        opts["ksp_type"] = "cg"
        opts["ksp_rtol"] = 1.0e-5
        opts["pc_type"] = "hypre"
        opts['pc_hypre_type'] = 'boomeramg'
        opts["pc_hypre_boomeramg_max_iter"] = 1
        opts["pc_hypre_boomeramg_cycle_type"] = "v"
        # opts["pc_hypre_boomeramg_print_statistics"] = 1
    else:
        opts["ksp_rtol"] = 1.0e-8
        opts["pc_type"] = "gamg"
        opts["pc_gamg_type"] = "agg"
        opts["pc_gamg_coarse_eq_limit"] = 1000
        opts["pc_gamg_sym_graph"] = True
        opts["mg_levels_ksp_type"] = "chebyshev"
        opts["mg_levels_pc_type"] = "jacobi"
        opts["mg_levels_esteig_ksp_type"] = "cg"
        opts["matptap_via"] = "scalable"
        opts["pc_gamg_square_graph"] = 2
        opts["pc_gamg_threshold"] = 0.02
    # opts["help"] = None # List all available options
    # opts["ksp_view"] = None # List progress of solver

    # Setup PETSc solver
    solver = PETSc.KSP().create(MPI.COMM_WORLD)
    solver.setFromOptions()

    if info:
        log_info(f"Run {r_lvl}: Solving")

    with Timer("~Elasticity: Solve problem") as timer:
        solver.setOperators(A)
        uh = b.copy()
        uh.set(0)
        solver.solve(b, uh)
        uh.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD)
        mpc.backsubstitution(uh)
        solver_time = timer.elapsed()
    if kspview:
        solver.view()

    mem = sum(MPI.COMM_WORLD.allgather(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss))
    it = solver.getIterationNumber()

    num_dofs = V.dofmap.index_map.size_global * V.dofmap.index_map_bs
    if out_hdf5 is not None:
        d_set = out_hdf5.get("its")
        d_set[r_lvl] = it
        d_set = out_hdf5.get("num_dofs")
        d_set[r_lvl] = num_dofs
        d_set = out_hdf5.get("num_slaves")
        d_set[r_lvl, MPI.COMM_WORLD.rank] = mpc.num_local_slaves
        d_set = out_hdf5.get("solve_time")
        d_set[r_lvl, MPI.COMM_WORLD.rank] = solver_time[0]
    if info:
        log_info(f"Lvl: {r_lvl}, Its: {it}, max Mem: {mem}, dim(V): {num_dofs}")

    if xdmf:
        # Write solution to file
        u_h = Function(mpc.function_space)
        u_h.vector.setArray(uh.array)
        u_h.name = "u_mpc"
        fname = f"results/bench_elasticity_edge_{r_lvl}.xdmf"
        with XDMFFile(MPI.COMM_WORLD, fname, "w") as outfile:
            outfile.write_mesh(mesh)
            outfile.write_function(u_h)
Пример #22
0
def test_assemble_functional_ds(mode):
    mesh = create_unit_square(MPI.COMM_WORLD, 12, 12, ghost_mode=mode)
    M = form(1.0 * ds(domain=mesh))
    value = assemble_scalar(M)
    value = mesh.comm.allreduce(value, op=MPI.SUM)
    assert value == pytest.approx(4.0, 1e-12)
Пример #23
0
    def neumann_bcs(self, V, V_real):

        w, w_old = as_ufl(0), as_ufl(0)

        for n in self.bc_dict['neumann']:

            if n['dir'] == 'xyz':

                func, func_old = Function(V), Function(V)

                if 'curve' in n.keys():
                    load = expression.template_vector()
                    load.val_x, load.val_y, load.val_z = self.ti.timecurves(
                        n['curve'][0])(self.ti.t_init), self.ti.timecurves(
                            n['curve'][1])(self.ti.t_init), self.ti.timecurves(
                                n['curve'][2])(self.ti.t_init)
                    func.interpolate(load.evaluate), func_old.interpolate(
                        load.evaluate)
                    self.ti.funcs_to_update_vec.append({
                        func: [
                            self.ti.timecurves(n['curve'][0]),
                            self.ti.timecurves(n['curve'][1]),
                            self.ti.timecurves(n['curve'][2])
                        ]
                    })
                    self.ti.funcs_to_update_vec_old.append({
                        func_old: [
                            self.ti.timecurves(n['curve'][0]),
                            self.ti.timecurves(n['curve'][1]),
                            self.ti.timecurves(n['curve'][2])
                        ]
                    })
                else:
                    func.vector.set(
                        n['val']
                    )  # currently only one value for all directions - use constant load function otherwise!

                for i in range(len(n['id'])):

                    ds_ = ds(subdomain_data=self.io.mt_b1,
                             subdomain_id=n['id'][i],
                             metadata={'quadrature_degree': self.quad_degree})

                    w += self.vf.deltaP_ext_neumann(func, ds_)
                    w_old += self.vf.deltaP_ext_neumann(func_old, ds_)

            elif n['dir'] == 'normal':  # reference normal

                func, func_old = Function(V_real), Function(V_real)

                if 'curve' in n.keys():
                    load = expression.template()
                    load.val = self.ti.timecurves(n['curve'])(self.ti.t_init)
                    func.interpolate(load.evaluate), func_old.interpolate(
                        load.evaluate)
                    self.ti.funcs_to_update.append(
                        {func: self.ti.timecurves(n['curve'])})
                    self.ti.funcs_to_update_old.append(
                        {func_old: self.ti.timecurves(n['curve'])})
                else:
                    func.vector.set(n['val'])

                for i in range(len(n['id'])):

                    ds_ = ds(subdomain_data=self.io.mt_b1,
                             subdomain_id=n['id'][i],
                             metadata={'quadrature_degree': self.quad_degree})

                    w += self.vf.deltaP_ext_neumann_normal(func, ds_)
                    w_old += self.vf.deltaP_ext_neumann_normal(func_old, ds_)

            else:
                raise NameError("Unknown dir option for Neumann BC!")

        return w, w_old
Пример #24
0
    bc_local.set(5.0)

u0 = Function(V)
with u0.vector.localForm() as bc_local:
    bc_local.set(0.0)

# Define Dirichlet boundary conditions at top and bottom boundaries
bcs = [
    DirichletBC(V, u5,
                np.where(mf_line.values == tag_info['TOP'])[0]),
    DirichletBC(V, u0,
                np.where(mf_line.values == tag_info['BOTTOM'])[0])
]

dx = dx(subdomain_data=mf_triangle)
ds = ds(subdomain_data=mf_line)

# Define variational form
F = (inner(a0 * grad(u), grad(v)) * dx(tag_info['DOMAIN']) +
     inner(a1 * grad(u), grad(v)) * dx(tag_info['OBSTACLE']) -
     g_L * v * ds(tag_info['LEFT']) - g_R * v * ds(tag_info['RIGHT']) -
     f * v * dx(tag_info['DOMAIN']) - f * v * dx(tag_info['OBSTACLE']))

# Separate left and right hand sides of equation
a, L = lhs(F), rhs(F)

# Solve problem
u = Function(V)
solve(a == L, u, bcs)

with XDMFFile(dolfin.MPI.comm_world, "output.xdmf") as xdmf_outfile:
Пример #25
0
    def set_variational_forms_and_jacobians(self):

        self.cq, self.cq_old, self.dcq, self.dforce = [], [], [], []
        self.coupfuncs, self.coupfuncs_old = [], []

        # Lagrange multiplier stiffness matrix (most likely to be zero!)
        self.K_lm = PETSc.Mat().createAIJ(size=(self.num_coupling_surf,
                                                self.num_coupling_surf),
                                          bsize=None,
                                          nnz=None,
                                          csr=None,
                                          comm=self.comm)
        self.K_lm.setUp()

        # Lagrange multipliers
        self.lm, self.lm_old = self.K_lm.createVecLeft(
        ), self.K_lm.createVecLeft()

        # 3D constraint variable (volume or flux)
        self.constr, self.constr_old = [], []

        self.work_coupling, self.work_coupling_old, self.work_coupling_prestr = as_ufl(
            0), as_ufl(0), as_ufl(0)

        # coupling variational forms and Jacobian contributions
        for n in range(self.num_coupling_surf):

            self.pr0D = expression.template()

            self.coupfuncs.append(Function(
                self.pbs.Vd_scalar)), self.coupfuncs_old.append(
                    Function(self.pbs.Vd_scalar))
            self.coupfuncs[-1].interpolate(
                self.pr0D.evaluate), self.coupfuncs_old[-1].interpolate(
                    self.pr0D.evaluate)

            cq_, cq_old_ = as_ufl(0), as_ufl(0)
            for i in range(len(self.surface_c_ids[n])):

                ds_vq = ds(
                    subdomain_data=self.pbs.io.mt_b1,
                    subdomain_id=self.surface_c_ids[n][i],
                    metadata={'quadrature_degree': self.pbs.quad_degree})

                # currently, only volume or flux constraints are supported
                if self.coupling_params['constraint_quantity'] == 'volume':
                    cq_ += self.pbs.vf.volume(self.pbs.u,
                                              self.pbs.ki.J(self.pbs.u),
                                              self.pbs.ki.F(self.pbs.u), ds_vq)
                    cq_old_ += self.pbs.vf.volume(
                        self.pbs.u_old, self.pbs.ki.J(self.pbs.u_old),
                        self.pbs.ki.F(self.pbs.u_old), ds_vq)
                elif self.coupling_params['constraint_quantity'] == 'flux':
                    cq_ += self.pbs.vf.flux(self.pbs.vel,
                                            self.pbs.ki.J(self.pbs.u),
                                            self.pbs.ki.F(self.pbs.u), ds_vq)
                    cq_old_ += self.pbs.vf.flux(self.pbs.v_old,
                                                self.pbs.ki.J(self.pbs.u_old),
                                                self.pbs.ki.F(self.pbs.u_old),
                                                ds_vq)
                else:
                    raise NameError(
                        "Unknown constraint quantity! Choose either volume or flux!"
                    )

            self.cq.append(cq_), self.cq_old.append(cq_old_)
            self.dcq.append(derivative(self.cq[-1], self.pbs.u, self.pbs.du))

            df_ = as_ufl(0)
            for i in range(len(self.surface_p_ids[n])):

                ds_p = ds(subdomain_data=self.pbs.io.mt_b1,
                          subdomain_id=self.surface_p_ids[n][i],
                          metadata={'quadrature_degree': self.pbs.quad_degree})
                df_ += self.pbs.timefac * self.pbs.vf.surface(
                    self.pbs.ki.J(self.pbs.u), self.pbs.ki.F(self.pbs.u), ds_p)

                # add to solid rhs contributions
                self.work_coupling += self.pbs.vf.deltaW_ext_neumann_true(
                    self.pbs.ki.J(self.pbs.u), self.pbs.ki.F(self.pbs.u),
                    self.coupfuncs[-1], ds_p)
                self.work_coupling_old += self.pbs.vf.deltaW_ext_neumann_true(
                    self.pbs.ki.J(self.pbs.u_old),
                    self.pbs.ki.F(self.pbs.u_old), self.coupfuncs_old[-1],
                    ds_p)

                # for prestressing, true loads should act on the reference, not the current configuration
                if self.pbs.prestress_initial:
                    self.work_coupling_prestr += self.pbs.vf.deltaW_ext_neumann_refnormal(
                        self.coupfuncs_old[-1], ds_p)

            self.dforce.append(df_)

        # minus sign, since contribution to external work!
        self.pbs.weakform_u += -self.pbs.timefac * self.work_coupling - (
            1. - self.pbs.timefac) * self.work_coupling_old

        # add to solid Jacobian
        self.pbs.jac_uu += -self.pbs.timefac * derivative(
            self.work_coupling, self.pbs.u, self.pbs.du)
Пример #26
0
def test_manufactured_poisson_dg(degree, filename, datadir):
    """ Manufactured Poisson problem, solving u = x[component]**n, where n is the
    degree of the Lagrange function space.

    """
    with XDMFFile(MPI.COMM_WORLD,
                  os.path.join(datadir, filename),
                  "r",
                  encoding=XDMFFile.Encoding.ASCII) as xdmf:
        mesh = xdmf.read_mesh(name="Grid")

    V = FunctionSpace(mesh, ("DG", degree))
    u, v = TrialFunction(V), TestFunction(V)

    # Exact solution
    x = SpatialCoordinate(mesh)
    u_exact = x[1]**degree

    # Coefficient
    k = Function(V)
    k.vector.set(2.0)
    k.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                         mode=PETSc.ScatterMode.FORWARD)

    # Source term
    f = -div(k * grad(u_exact))

    # Mesh normals and element size
    n = FacetNormal(mesh)
    h = CellDiameter(mesh)
    h_avg = (h("+") + h("-")) / 2.0

    # Penalty parameter
    alpha = 32

    dx_ = dx(metadata={"quadrature_degree": -1})
    ds_ = ds(metadata={"quadrature_degree": -1})
    dS_ = dS(metadata={"quadrature_degree": -1})

    a = inner(k * grad(u), grad(v)) * dx_ \
        - k("+") * inner(avg(grad(u)), jump(v, n)) * dS_ \
        - k("+") * inner(jump(u, n), avg(grad(v))) * dS_ \
        + k("+") * (alpha / h_avg) * inner(jump(u, n), jump(v, n)) * dS_ \
        - inner(k * grad(u), v * n) * ds_ \
        - inner(u * n, k * grad(v)) * ds_ \
        + (alpha / h) * inner(k * u, v) * ds_
    L = inner(f, v) * dx_ - inner(k * u_exact * n, grad(v)) * ds_ \
        + (alpha / h) * inner(k * u_exact, v) * ds_

    for integral in a.integrals():
        integral.metadata(
        )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(
            a)
    for integral in L.integrals():
        integral.metadata(
        )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(
            L)

    b = assemble_vector(L)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)

    A = assemble_matrix(a, [])
    A.assemble()

    # Create LU linear solver
    solver = PETSc.KSP().create(MPI.COMM_WORLD)
    solver.setType(PETSc.KSP.Type.PREONLY)
    solver.getPC().setType(PETSc.PC.Type.LU)
    solver.setOperators(A)

    # Solve
    uh = Function(V)
    solver.solve(b, uh.vector)
    uh.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                          mode=PETSc.ScatterMode.FORWARD)
    error = mesh.mpi_comm().allreduce(assemble_scalar((u_exact - uh)**2 * dx),
                                      op=MPI.SUM)
    assert np.absolute(error) < 1.0e-14
Пример #27
0
def clement_interpolant(source, target_space=None, boundary_tag=None):
    r"""
    Compute the Clement interpolant of a :math:`\mathbb P0`
    source field, i.e. take the volume average over
    neighbouring cells at each vertex.

    :arg source: the :math:`\mathbb P0` source field
    :kwarg target_space: the :math:`\mathbb P1` space to
        interpolate into
    :boundary_tag: optional boundary tag to compute the
        Clement interpolant over.
    """
    V = source.function_space()
    assert V.ufl_element().family() == "Discontinuous Lagrange"
    assert V.ufl_element().degree() == 0
    rank = len(V.ufl_element().value_shape())
    mesh = V.mesh()
    dim = mesh.topological_dimension()
    P1 = firedrake.FunctionSpace(mesh, "CG", 1)
    dX = ufl.dx if boundary_tag is None else ufl.ds(boundary_tag)
    if target_space is None:
        if rank == 0:
            target_space = P1
        elif rank == 1:
            target_space = firedrake.VectorFunctionSpace(mesh, "CG", 1)
        elif rank == 2:
            target_space = firedrake.TensorFunctionSpace(mesh, "CG", 1)
        else:
            raise ValueError(f"Rank-{rank} tensors are not supported.")
    else:
        assert target_space.ufl_element().family() == "Lagrange"
        assert target_space.ufl_element().degree() == 1
    target = firedrake.Function(target_space)

    # Compute the patch volume at each vertex
    if boundary_tag is None:
        P0 = firedrake.FunctionSpace(mesh, "DG", 0)
        dx = ufl.dx(domain=mesh)
        volume = firedrake.assemble(firedrake.TestFunction(P0) * dx)
    else:
        volume = get_facet_areas(mesh)
    patch_volume = firedrake.Function(P1)
    kernel = "for (int i=0; i < p.dofs; i++) p[i] += v[0];"
    keys = {
        "v": (volume, op2.READ),
        "p": (patch_volume, op2.INC),
    }
    firedrake.par_loop(kernel, dX, keys)

    # Volume average
    keys = {
        "s": (source, op2.READ),
        "v": (volume, op2.READ),
        "t": (target, op2.INC),
    }
    if rank == 0:
        firedrake.par_loop(
            """
            for (int i=0; i < t.dofs; i++) {
              t[i] += s[0]*v[0];
            }
            """,
            dX,
            keys,
        )
    elif rank == 1:
        firedrake.par_loop(
            """
            int d = %d;
            for (int i=0; i < t.dofs; i++) {
              for (int j=0; j < d; j++) {
                t[i*d + j] += s[j]*v[0];
              }
            }
            """
            % dim,
            dX,
            keys,
        )
    elif rank == 2:
        firedrake.par_loop(
            """
            int d = %d;
            int Nd = d*d;
            for (int i=0; i < t.dofs; i++) {
              for (int j=0; j < d; j++) {
                for (int k=0; k < d; k++) {
                  t[i*Nd + j*d + k] += s[j*d + k]*v[0];
                }
              }
            }
            """
            % dim,
            dX,
            keys,
        )
    else:
        raise ValueError(f"Rank-{rank} tensors are not supported.")
    target.interpolate(target / patch_volume)
    if boundary_tag is not None:
        target.dat.data_with_halos[:] = np.nan_to_num(target.dat.data_with_halos)
    return target
Пример #28
0
u5 = Function(V)
with u5.vector().localForm() as bc_local:
    bc_local.set(5.0)

u0 = Function(V)
with u0.vector().localForm() as bc_local:
    bc_local.set(0.0)

# Define Dirichlet boundary conditions at top and bottom boundaries
bcs = [
    DirichletBC(V, u5, boundaries.where_equal(boundary['TOP'][0])),
    DirichletBC(V, u0, boundaries.where_equal(boundary['BOTTOM'][0]))
]

dx = dx(subdomain_data=domains)
ds = ds(subdomain_data=boundaries)

# Define variational form
F = (inner(a0 * grad(u), grad(v)) * dx(boundary['DOMAIN'][0]) +
     inner(a1 * grad(u), grad(v)) * dx(boundary['OBSTACLE'][0]) -
     g_L * v * ds(boundary['LEFT'][0]) - g_R * v * ds(boundary['RIGHT'][0]) -
     f * v * dx(boundary['DOMAIN'][0]) - f * v * dx(boundary['OBSTACLE'][0]))

# Separate left and right hand sides of equation
a, L = lhs(F), rhs(F)

# Solve problem
u = Function(V)
solve(a == L, u, bcs)

bb_tree = cpp.geometry.BoundingBoxTree(mesh, 2)
Пример #29
0
# Copyright (C) 2008 Anders Logg and Kristian B. Oelgaard
#
# This file is part of UFL.
#
# UFL is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# UFL is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with UFL. If not, see <http://www.gnu.org/licenses/>.
#
# This simple example illustrates how forms can be defined on different sub domains.
# It is supported for all three integral types.
from ufl import (FiniteElement, TestFunction, TrialFunction, ds, dS, dx,
                 tetrahedron)

element = FiniteElement("CG", tetrahedron, 1)

v = TestFunction(element)
u = TrialFunction(element)

a = v * u * dx(0) + 10.0 * v * u * dx(1) + v * u * ds(0) + 2.0 * v * u * ds(1)\
    + v('+') * u('+') * dS(0) + 4.3 * v('+') * u('+') * dS(1)
Пример #30
0
def test_assemble_functional_ds(mode):
    mesh = UnitSquareMesh(MPI.COMM_WORLD, 12, 12, ghost_mode=mode)
    M = 1.0 * ds(domain=mesh)
    value = dolfinx.fem.assemble_scalar(M)
    value = mesh.mpi_comm().allreduce(value, op=MPI.SUM)
    assert value == pytest.approx(4.0, 1e-12)
Пример #31
0
u5 = Function(V)
with u5.vector().localForm() as bc_local:
    bc_local.set(5.0)

u0 = Function(V)
with u0.vector().localForm() as bc_local:
    bc_local.set(0.0)

# Define Dirichlet boundary conditions at top and bottom boundaries
bcs = [
    DirichletBC(V, u5, boundaries.where_equal(boundary["TOP"][0])),
    DirichletBC(V, u0, boundaries.where_equal(boundary["BOTTOM"][0])),
]

dx = dx(subdomain_data=domains)
ds = ds(subdomain_data=boundaries)

# Define variational form
F = (inner(a0 * grad(u), grad(v)) * dx(boundary["DOMAIN"][0]) +
     inner(a1 * grad(u), grad(v)) * dx(boundary["OBSTACLE"][0]) -
     g_L * v * ds(boundary["LEFT"][0]) - g_R * v * ds(boundary["RIGHT"][0]) -
     f * v * dx(boundary["DOMAIN"][0]) - f * v * dx(boundary["OBSTACLE"][0]))

# Separate left and right hand sides of equation
a, L = lhs(F), rhs(F)

# Solve problem
u = Function(V)
solve(a == L, u, bcs)

bb_tree = cpp.geometry.BoundingBoxTree(mesh, 2)