Пример #1
0
def convert_graph(checkpoint_dir, height, width, output_row_col):
    """Converts uflow to a frozen model."""

    print('Building the model.')
    tf.compat.v1.reset_default_graph()
    uflow = UFlow(checkpoint_dir=checkpoint_dir,
                  channel_multiplier=FLAGS.channel_multiplier,
                  num_levels=FLAGS.num_levels)
    image1 = tf.compat.v1.placeholder(tf.float32, [height, width, 3],
                                      name='first_image')
    image2 = tf.compat.v1.placeholder(tf.float32, [height, width, 3],
                                      name='second_image')

    flow = uflow.infer_no_tf_function(image1,
                                      image2,
                                      input_height=FLAGS.resize_to_height,
                                      input_width=FLAGS.resize_to_width)
    if output_row_col:
        flow = tf.identity(flow, 'flow')
    else:
        flow = tf.identity(flow[Ellipsis, ::-1], 'flow')
    print('Loading the checkpoint.')
    saver = tf.compat.v1.train.Saver()
    sess = tf.compat.v1.Session()
    sess.run(tf.compat.v1.global_variables_initializer())
    sess.run(tf.compat.v1.local_variables_initializer())
    # Apparently, uflow.restore() does not work here in graph mode.
    saver.restore(sess, tf.train.latest_checkpoint(checkpoint_dir))

    # Load images.
    image1_np = cv2.imread(
        FLAGS.image1_path)[:, :, ::-1].astype('float32') / 255.
    image2_np = cv2.imread(
        FLAGS.image2_path)[:, :, ::-1].astype('float32') / 255.
    image1_np = cv2.resize(image1_np, (FLAGS.width, FLAGS.height))
    image2_np = cv2.resize(image2_np, (FLAGS.width, FLAGS.height))

    # Compute test flow and save.
    flow_np = sess.run(flow, feed_dict={image1: image1_np, image2: image2_np})
    uflow_plotting.plot_flow(image1_np, image2_np, flow_np, 'test_result.png',
                             checkpoint_dir)

    print('Freezing and optimizing the graph.')
    dg = tf.compat.v1.get_default_graph()
    frozen_graph_def = tf.compat.v1.graph_util.convert_variables_to_constants(
        sess,  # The session is used to retrieve the weights.
        dg.as_graph_def(),  # The graph_def is used to retrieve the nodes.
        ['flow']  # The output node names are used to select the useful nodes.
    )

    print('Writing the result to', checkpoint_dir)
    filename = os.path.join(checkpoint_dir, 'uflow.pb')
    with tf.io.gfile.GFile(filename, 'wb') as f:
        f.write(frozen_graph_def.SerializeToString())
Пример #2
0
def _export_frozen_graph():
    # save weights
    tempdir = tempfile.mkdtemp()
    sess = tf.compat.v1.Session()
    with sess.as_default():
        uflow = UFlow(checkpoint_dir=tempdir)
        image1 = tf.compat.v1.placeholder(tf.float32, [HEIGHT, WIDTH, 3],
                                          name='first_image')
        image2 = tf.compat.v1.placeholder(tf.float32, [HEIGHT, WIDTH, 3],
                                          name='second_image')
        flow = tf.identity(uflow.infer_no_tf_function(image1, image2), 'flow')
        sess.run(tf.compat.v1.global_variables_initializer())
        image1_np = np.random.randn(HEIGHT, WIDTH, 3)
        image2_np = np.random.randn(HEIGHT, WIDTH, 3)
        flow_output = sess.run(flow,
                               feed_dict={
                                   image1: image1_np,
                                   image2: image2_np
                               })
        uflow.save()
    # freeze model
    freeze_model.convert_graph(tempdir, HEIGHT, WIDTH, output_row_col=True)
    return tempdir, image1_np, image2_np, flow_output