Пример #1
0
class TestUKF(unittest.TestCase):
    def setUp(self):

        def fx(x, T): return x

        def hx(x): return x

        x0 = np.array([0, 0])
        P0 = np.array([[1, 0.5], [0.5, 1]])
        Q = np.eye(2)
        R = np.eye(2)

        self.ukf = UKF(fx, hx, Q, R, x0, P0)

    def test_predict(self):
        self.ukf.predict(T=1)
        (x, P) = self.ukf.get_state()
        x = np.round(x, decimals=5)
        P = np.round(P, decimals=5)

        self.assertTrue((x == np.array([0, 0])).all())
        self.assertTrue((P == np.array([[2, 0.5], [0.5, 2]])).all())

    def test_update(self):
        self.ukf.predict(T=1)
        self.ukf.update(np.array([1, 1]))

        (x, P) = self.ukf.get_state()
        x = np.round(x, decimals=5)
        P = np.round(P, decimals=5)

        self.assertTrue((x == np.array([0.71429,  0.71429])).all())
        self.assertTrue((P == np.array([[0.65714,  0.05714], [0.05714, 0.65714]])).all())
Пример #2
0
def main():
    np.set_printoptions(precision=3)

    # Process Noise
    q = np.eye(5)
    q[0][0] = 0.001
    q[1][1] = 0.001
    q[2][2] = 0.001
    q[3][3] = 0.001
    q[4][4] = 0.001
    # q[5][5] = 0.0025
    realx = []
    realy = []
    realv = []
    realtheta = []
    realw = []
    estimatex = []
    estimatey = []
    estimatev = []
    estimatetheta = []
    estimatew = []
    estimate2y = []
    estimate2x = []
    estimatev2 = []
    realyaw = []
    estimateyaw = []
    estimateyaw2 = []
    realyawr = []
    estimateyawr = []
    estimateyawr2 = []
    estimate3x = []
    estimate3y = []
    ex = []
    ey = []
    # create measurement noise covariance matrices
    r_imu = np.zeros([1, 1])
    r_imu[0][0] = 0.001
    r_compass = np.zeros([1, 1])
    r_compass[0][0] = 0.001
    r_encoder = np.zeros([1, 1])
    r_encoder[0][0] = 0.001
    r_gpsx = np.zeros([1, 1])
    r_gpsx[0][0] = 0.001
    r_gpsy = np.zeros([1, 1])
    r_gpsy[0][0] = 0.001

    ini = np.array([0.000, 0.000, 0.000, 0.000, 0.000])
    xest = np.array([[0.000], [0.000], [0.000], [0.000], [0.000]])

    pest = np.eye(5)
    jf = np.eye(5)

    #ガウス分布の粒子の生成
    p = 100
    x_p = np.zeros((p, 5))
    pw = np.zeros((p, 5))
    x_p_update = np.zeros((p, 5))
    z_p_update = np.zeros((p, 5))
    for i in range(0, p):
        x_p[i] = np.random.randn(5)

    xp = np.zeros((1, 5))

    # pass all the parameters into the UKF!
    # number of state variables, process noise, initial state, initial coariance, three tuning paramters, and the iterate function
    state_estimator = UKF(5, q, ini, np.eye(5), 0.04, 0.0, 2.0, iterate_x)

    with open('example.csv', 'r') as csvfile:
        reader = csv.reader(csvfile)
        headers = next(reader)

        last_time = 0
        # read data
        for row in reader:
            row = [float(x) for x in row]

            cur_time = row[0]
            d_time = cur_time - last_time
            real_state = np.array([row[i] for i in [5, 6, 3, 4, 2]])

            # create an array for the data from each sensor
            compass_hdg = row[9]
            compass_data = np.array([compass_hdg])

            encoder_vel = row[10]
            encoder_data = np.array([encoder_vel])

            gps_x = row[11]
            gpsx_data = np.array([gps_x])

            gps_y = row[12]
            gpsy_data = np.array([gps_y])

            imu_yaw_rate = row[8]
            imu_data = np.array([imu_yaw_rate])

            last_time = cur_time

            observation_data = np.array([[row[11]], [row[12]], [row[10]],
                                         [row[9]], [row[8]]])

            observation_con = np.eye(5)
            observation_con[0][0] = 0.001
            observation_con[1][1] = 0.001
            observation_con[2][2] = 0.001
            observation_con[3][3] = 0.001
            observation_con[4][4] = 0.001

            # prediction is pretty simple
            state_estimator.predict(d_time)

            # updating isn't bad either
            # remember that the updated states should be zero-indexed
            # the states should also be in the order of the noise and data matrices
            state_estimator.update([4], imu_data, r_imu)
            state_estimator.update([3], compass_data, r_compass)
            state_estimator.update([2], encoder_data, r_encoder)
            state_estimator.update([1], gpsy_data, r_gpsy)
            state_estimator.update([0], gpsx_data, r_gpsx)

            #ekf
            ret2 = state_estimator.motion_model(xest)
            jf = state_estimator.jacobi(ret2)
            xest, pest = state_estimator.ekf_estimation(
                xest, pest, observation_data, observation_con, jf, ret2)
            """           
            #particle filter
            for i in range(0,p):
                x_p_update[i,:] = motion_model2(x_p[i,:]) 
                z_p_update[i,:] = x_p_update[i,:]
                pw[i] = cul_weight(observation_data,z_p_update[i,:])
            
            sum1=0.000
            sum2=0.000
            sum3=0.000
            sum4=0.000
            sum5=0.000
            
            for i in range(0,p):
                sum1=sum1+pw[i,0]
                sum2=sum1+pw[i,1]
                sum3=sum1+pw[i,2]
                sum4=sum1+pw[i,3]
                sum5=sum1+pw[i,4]
                
            #normalize
            for i in range(0,p):
                pw[i,0]=pw[i,0]/sum1
                pw[i,1]=pw[i,1]/sum2
                pw[i,2]=pw[i,2]/sum3
                pw[i,3]=pw[i,3]/sum4
                pw[i,4]=pw[i,4]/sum5
            
            #resampling
            for i in range(0,p):
                u = np.random.rand(1,5)
                qt1=np.zeros((1,5))
                for j in range(0,p):
                    qt1=qt1+pw[j]
                    if np.all(qt1) > np.all(u):
                        x_p[i]=x_p_update[j]
                        break
            xest2 =np.zeros((1,5))
            for i in range(0,p):
                xest2[0,0]=xest2[0,0]+x_p[i,0]
                xest2[0,1]=xest2[0,1]+x_p[i,1]
                xest2[0,2]=xest2[0,2]+x_p[i,2]
                xest2[0,3]=xest2[0,3]+x_p[i,3]
                xest2[0,4]=xest2[0,4]+x_p[i,4]
            
            xest2[0,0] = xest2[0,0] / p
            xest2[0,1] = xest2[0,1] / p
            xest2[0,2] = xest2[0,2] / p
            xest2[0,3] = xest2[0,3] / p
            xest2[0,4] = xest2[0,4] / p
            """

            print("----------------------------------------------------------")
            print("Real state: ", real_state)
            print("UKF Estimated state: ", state_estimator.get_state())
            print("EKF Estimated state: ", xest.T)

            ex.append(row[11])
            ey.append(row[12])
            realx.append(real_state[0])
            realy.append(real_state[1])
            estimatex.append(state_estimator.get_state(0))
            estimatey.append(state_estimator.get_state(1))
            realv.append(real_state[2])
            estimatev.append(state_estimator.get_state(2))
            estimate2x.append(xest[0, 0])
            estimate2y.append(xest[1, 0])
            estimatev2.append(xest[2, 0])
            realyaw.append(real_state[3])
            estimateyaw.append(state_estimator.get_state(3))
            estimateyaw2.append(xest[3, 0])
            realyawr.append(real_state[4])
            estimateyawr.append(state_estimator.get_state(4))
            estimateyawr2.append(xest[4, 0])

    #figl=plt.figure(4)
    #plt.subplot(411)
    plt.plot(realx, realy, label="real_state")
    plt.plot(estimatex, estimatey, label="ufk_estimator")
    plt.plot(estimate2x, estimate2y, label="efk_estimator")
    #plt.plot(ex,ey,label="estimator")
    #plt.plot(estimate3x,estimate3y,label="pk_estimator")
    plt.xlabel("x")
    plt.ylabel("y")
    plt.legend(loc="best")
    #plt.xlim(0,2)
    #plt.ylim(0,2)
    """
    plt.subplot(412)
    plt.plot(realv)
    plt.plot(estimatev)
    plt.plot(estimatev2)

    plt.xlabel("sample")
    plt.ylabel("v")   
    
    plt.subplot(413)
    plt.plot(realyaw)
    plt.plot(estimateyaw)
    plt.plot(estimateyaw2)
    plt.xlabel("sample")
    plt.ylabel("yaw")    
    
    plt.subplot(414)
    plt.plot(realyawr)
    plt.plot(estimateyawr)
    plt.plot(estimateyawr2)
    plt.xlabel("sample")
    plt.ylabel("yawr")
    """
    sigma1 = 0
    sigma2 = 0
    sigma3 = 0
    sigma4 = 0
    sigma5 = 0
    sigma6 = 0
    sigma7 = 0
    sigma8 = 0
    sigma9 = 0
    sigma10 = 0
    for i in range(0, len(realx)):
        sigma1 += (realx[i] - estimatex[i])**2
        sigma2 += (realy[i] - estimatey[i])**2
        sigma3 += (realx[i] - estimate2x[i])**2
        sigma4 += (realx[i] - estimate2y[i])**2
        sigma5 += (realx[i] - estimatev[i])**2
        sigma6 += (realy[i] - estimatev2[i])**2
        sigma7 += (realx[i] - estimateyaw[i])**2
        sigma8 += (realx[i] - estimateyaw2[i])**2
        sigma9 += (realx[i] - estimateyawr[i])**2
        sigma10 += (realy[i] - estimateyawr2[i])**2

    REME_x = math.sqrt(sigma1 / len(realx))
    REME_y = math.sqrt(sigma2 / len(realx))
    REME_x2 = math.sqrt(sigma3 / len(realx))
    REME_y2 = math.sqrt(sigma4 / len(realx))
    REME_v1 = math.sqrt(sigma5 / len(realx))
    REME_v2 = math.sqrt(sigma6 / len(realx))
    REME_y1 = math.sqrt(sigma7 / len(realx))
    REME_y2 = math.sqrt(sigma8 / len(realx))
    REME_yr1 = math.sqrt(sigma9 / len(realx))
    REME_yr2 = math.sqrt(sigma10 / len(realx))

    print("RMSE(ukf)_x=", REME_x, "RMSE(ekf)_x=", REME_x2)
    print("RMSE(ukf)_y=", REME_y, "RMSE(ekf)_y=", REME_y2)
    print("RMSE(ukf)_v=", REME_v1, "RMSE(ekf)_v=", REME_v2)
    print("RMSE(ukf)_yaw=", REME_y1, "RMSE(ekf)_yaw=", REME_y2)
    print("RMSE(ukf)_yawr=", REME_yr1, "RMSE(ekf)_yawr=", REME_yr2)
    """
Пример #3
0
def main():
    np.set_printoptions(precision=3)

    # Process Noise
    q = np.eye(6)
    q[0][0] = 0.0001
    q[1][1] = 0.0001
    q[2][2] = 0.0004
    q[3][3] = 0.0025
    q[4][4] = 0.0025
    q[5][5] = 0.0025
    
    # create measurement noise covariance matrices
    r_imu = np.zeros([2, 2])
    r_imu[0][0] = 0.01
    r_imu[1][1] = 0.03

    r_compass = np.zeros([1, 1])
    r_compass[0][0] = 0.02

    r_encoder = np.zeros([1, 1])
    r_encoder[0][0] = 0.001

    # pass all the parameters into the UKF!
    # number of state variables, process noise, initial state, initial coariance, three tuning paramters, and the iterate function
    state_estimator = UKF(6, q, np.zeros(6), 0.0001*np.eye(6), 0.04, 0.0, 2.0, iterate_x)
    i=0
    csvfile=open('example.csv', 'r')
    for reader in csvfile:
        #print()
        
        #reader = csv.reader(csvfile)
        #reader=next(reader)
        row=reader.split(',')
        #print(reader)
        
        last_time = 0
        
        # read data
        if i!=0:    
            #for row in reader:
            print(row)
            '''
            try:
                row = [float(x) for x in row]
            except ValueError:
                print("error")
            '''
            cur_time = float(row[0])
            d_time = cur_time - last_time
            real_state = np.array([float(row[i]) for i in [5, 6, 4, 3, 2, 1]])

            # create an array for the data from each sensor
            compass_hdg = float(row[9])
            compass_data = np.array([compass_hdg])

            encoder_vel = float(row[10])
            encoder_data = np.array([encoder_vel])

            imu_accel = float(row[7])
            imu_yaw_rate = float(row[8])
            imu_data = np.array([imu_yaw_rate, imu_accel])

            last_time = cur_time

            # prediction is pretty simple
            state_estimator.predict(d_time)

            # updating isn't bad either
            # remember that the updated states should be zero-indexed
            # the states should also be in the order of the noise and data matrices
            state_estimator.update([4, 5], imu_data, r_imu)
            state_estimator.update([2], compass_data, r_compass)
            state_estimator.update([3], encoder_vel, r_encoder)

            print ("--------------------------------------------------------")
            print ("Real state: ", real_state)
            print ("Estimated state: ", state_estimator.get_state())
            print ("Difference: ", real_state - state_estimator.get_state())
        i+=1
Пример #4
0
Файл: new.py Проект: nerv8761/kf
def main():
    np.set_printoptions(precision=3)

    # Process Noise
    q = np.eye(5)
    q[0][0] = 0.001
    q[1][1] = 0.001
    q[2][2] = 0.004
    q[3][3] = 0.025
    q[4][4] = 0.025
    # q[5][5] = 0.0025
    realx = []
    realy = []
    realv = []
    realtheta = []
    realw = []
    estimatex = []
    estimatey = []
    estimatev = []
    estimatetheta = []
    estimatew = []
    estimate2y = []
    estimate2x = []

    # create measurement noise covariance matrices
    r_imu = np.zeros([1, 1])
    r_imu[0][0] = 0.01

    r_compass = np.zeros([1, 1])
    r_compass[0][0] = 0.02

    r_encoder = np.zeros([1, 1])
    r_encoder[0][0] = 0.001

    r_gpsx = np.zeros([1, 1])
    r_gpsx[0][0] = 0.1
    r_gpsy = np.zeros([1, 1])
    r_gpsy[0][0] = 0.1

    ini = np.array([0, 0, 0.3, 0, 0.3])

    # pass all the parameters into the UKF!
    # number of state variables, process noise, initial state, initial coariance, three tuning paramters, and the iterate function
    state_estimator = UKF(5, q, ini, np.eye(5), 0.04, 0.0, 2.0, iterate_x,
                          r_imu, r_compass, r_encoder, r_gpsx, r_gpsy)

    xest = np.zeros((5, 1))
    pest = np.eye(5)
    jf = []

    with open('example.csv', 'r') as csvfile:
        reader = csv.reader(csvfile)
        headers = next(reader)

        last_time = 0
        # read data
        for row in reader:
            row = [float(x) for x in row]

            cur_time = row[0]
            d_time = cur_time - last_time
            real_state = np.array([row[i] for i in [5, 6, 3, 4, 2]])

            # create an array for the data from each sensor
            compass_hdg = row[9]
            compass_data = np.array([compass_hdg])

            encoder_vel = row[10]
            encoder_data = np.array([encoder_vel])

            gps_x = row[11]
            gpsx_data = np.array([gps_x])

            gps_y = row[12]
            gpsy_data = np.array([gps_y])

            imu_yaw_rate = row[8]
            imu_data = np.array([imu_yaw_rate])

            last_time = cur_time

            observation_data = np.array(
                [row[11], row[12], row[10], row[9], row[8]])
            observation_datac = np.array([0.1, 0.1, 0.001, 0.02, 0.01])

            # prediction is pretty simple
            state_estimator.predict(d_time)

            # updating isn't bad either
            # remember that the updated states should be zero-indexed
            # the states should also be in the order of the noise and data matrices
            state_estimator.update([4], imu_data, r_imu)
            state_estimator.update([3], compass_data, r_compass)
            state_estimator.update([2], encoder_data, r_encoder)
            state_estimator.update([1], gpsy_data, r_gpsy)
            state_estimator.update([0], gpsx_data, r_gpsx)
            jf = state_estimator.jacobi(xest)

            xest, pest = state_estimator.ekf_estimation(
                xest, pest, observation_data, observation_datac, jf)

            print("--------------------------------------------------------")
            print("Real state: ", real_state)
            print("Estimated state: ", state_estimator.get_state())
            print("Difference: ", real_state - state_estimator.get_state())
            print("Estimated state2: ", xest)

            realx.append(real_state[0])
            realy.append(real_state[1])
            estimatex.append(state_estimator.get_state(0))
            estimatey.append(state_estimator.get_state(1))
            realv.append(real_state[2])
            estimatev.append(state_estimator.get_state(2))
            estimate2x.append(xest[0])
            estimate2y.append(xest[1])

    figl = plt.figure(2)
    plt.subplot(211)
    plt.plot(estimatex, estimatey, "-b", label="ufk_estimator")
    plt.plot(realx, realy, "-r", label="real_position")
    plt.plot(estimate2x, estimate2y, "-g", label="efk_estimator")
    plt.xlabel("x")
    plt.ylabel("y")
    plt.legend(loc="best")

    plt.subplot(212)
    plt.plot(realv, "-r", label="real_v")
    plt.plot(estimatev, "-b", label="estimator_v")
    plt.legend(loc="best")
Пример #5
0
def main():
    np.set_printoptions(precision=3)

    # Process Noise
    q = np.eye(6)
    q[0][0] = 0.0001
    q[1][1] = 0.0001
    q[2][2] = 0.0004
    q[3][3] = 0.0025
    q[4][4] = 0.0025
    q[5][5] = 0.0025
    realx = [0]
    realy = [0]
    estimatex = [0]
    estimatey = [0]
    t = [0]
    # create measurement noise covariance matrices
    r_imu = np.zeros([2, 2])
    r_imu[0][0] = 0.01
    r_imu[1][1] = 0.03

    r_compass = np.zeros([1, 1])
    r_compass[0][0] = 0.02

    r_encoder = np.zeros([1, 1])
    r_encoder[0][0] = 0.001

    # pass all the parameters into the UKF!
    # number of state variables, process noise, initial state, initial coariance, three tuning paramters, and the iterate function
    state_estimator = UKF(6, q, np.zeros(6), 0.0001 * np.eye(6), 0.04, 0.0,
                          2.0, iterate_x)

    with open('example.csv', 'r') as csvfile:
        reader = csv.reader(csvfile)
        headers = next(reader)

        last_time = 0
        # read data
        for row in reader:
            row = [float(x) for x in row]

            cur_time = row[0]
            d_time = cur_time - last_time
            real_state = np.array([row[i] for i in [5, 6, 4, 3, 2, 1]])

            # create an array for the data from each sensor
            compass_hdg = row[9]
            compass_data = np.array([compass_hdg])

            encoder_vel = row[10]
            encoder_data = np.array([encoder_vel])

            imu_accel = row[7]
            imu_yaw_rate = row[8]
            imu_data = np.array([imu_yaw_rate, imu_accel])

            last_time = cur_time

            # prediction is pretty simple
            state_estimator.predict(d_time)

            # updating isn't bad either
            # remember that the updated states should be zero-indexed
            # the states should also be in the order of the noise and data matrices
            state_estimator.update([4, 5], imu_data, r_imu)
            state_estimator.update([2], compass_data, r_compass)
            state_estimator.update([3], encoder_vel, r_encoder)

            print("--------------------------------------------------------")
            print("Real state: ", real_state)
            print("Estimated state: ", state_estimator.get_state())
            print("Difference: ", real_state - state_estimator.get_state())
            realx.append(real_state[3])
            realy.append(real_state[1])
            estimatex.append(state_estimator.get_state(3))
            estimatey.append(state_estimator.get_state(1))
            t.append(d_time)

    plt.plot(estimatex, "-b")
    plt.plot(realx, "-r")