def run_all_tests(search_problem): print(search_problem.maze) print(bfs_search(search_problem)) print(astar_search(search_problem, null_heuristic)) print(astar_search(search_problem, search_problem.state_len_heuristic)) print(astar_search(search_problem, search_problem.opt_state_len_heuristic)) print(astar_search(search_problem, search_problem.uniq_x_y_heuristic))
# Created by Ningxiang He on 01/08/2019 from CannibalProblem import CannibalProblem from uninformed_search import bfs_search from uninformed_search import dfs_search from uninformed_search import ids_search # Create a few test problems: problem331 = CannibalProblem((3, 3, 1)) problem541 = CannibalProblem((5, 4, 1)) problem551 = CannibalProblem((5, 5, 1)) # Run the searches. # Each of the search algorithms should return a SearchSolution object, # even if the goal was not found. If goal not found, len() of the path # in the solution object should be 0. print(bfs_search(problem331)) print(dfs_search(problem331)) print(ids_search(problem331)) print(bfs_search(problem551)) print(dfs_search(problem551)) print(ids_search(problem551)) print(bfs_search(problem541)) print(dfs_search(problem541)) print(ids_search(problem541))
from CannibalProblem import CannibalProblem from uninformed_search import bfs_search, dfs_search, ids_search # Create a few test problems: problem331 = CannibalProblem((3, 3, 1)) problem541 = CannibalProblem((5, 4, 1)) problem551 = CannibalProblem((5, 5, 1)) # Run the searches. # Each of the search algorithms should return a SearchSolution object, # even if the goal was not found. If goal not found, len() of the path # in the solution object should be 0. #print(bfs_search(problem331)) #print(dfs_search(problem331)) #print(ids_search(problem331)) #print(bfs_search(problem551)) #print(dfs_search(problem551)) #print(ids_search(problem551)) print(bfs_search(problem541)) #print(dfs_search(problem541)) print(ids_search(problem541))
def run_all_tests(search_problem): print(search_problem.maze) print(bfs_search(search_problem)) print(astar_search(search_problem, null_heuristic)) print(astar_search(search_problem, search_problem.manhattan_heuristic)) print(astar_search(search_problem, search_problem.straight_line_heuristic))
#Outline provided #No Code Additions - Himadri Narasimhamurthy #CS76 - 19W - M&C from CannibalProblem import CannibalProblem from uninformed_search import bfs_search, dfs_search, ids_search # Create a few test problems: problem331 = CannibalProblem((3, 3, 1)) problem541 = CannibalProblem((5, 4, 1)) problem551 = CannibalProblem((5, 5, 1)) # Run the searches. # Each of the search algorithms should return a SearchSolution object, # even if the goal was not found. If goal not found, len() of the path # in the solution object should be 0. print(bfs_search(problem331, False)) print(bfs_search(problem331, True)) print(dfs_search(problem331)) print(ids_search(problem331)) print(bfs_search(problem551, False)) print(dfs_search(problem551)) print(ids_search(problem551)) print(bfs_search(problem541, False)) print(dfs_search(problem541)) print(ids_search(problem541))
def wavefront_planning(self, table, maze, goal_loc): current_search = self goal_loc = (0, ) + goal_loc table = bfs_search(current_search, table, goal_loc) return table