Пример #1
0
    def __init__(self, prepoly, poly, prec, halt, print_mode, shift_seed, names, implementation='NTL'):
        """
        A capped absolute representation of Zq.

        INPUT:

            - prepoly -- The original polynomial defining the
              extension.  This could be a polynomial with integer
              coefficients, for example, while poly has coefficients
              in Zp.

            - poly -- The polynomial with coefficients in
              self.base_ring() defining this extension.

            - prec -- The precision cap of this ring.

            - halt -- unused

            - print_mode -- A dictionary of print options.

            - shift_seed -- unused

            - names -- a 4-tuple, (variable_name, residue_name, unramified_subextension_variable_name, uniformizer_name)

        EXAMPLES::

            sage: R.<a> = ZqCA(27,10000); R #indirect doctest
            Unramified Extension of 3-adic Ring with capped absolute precision 10000 in a defined by (1 + O(3^10000))*x^3 + (O(3^10000))*x^2 + (2 + O(3^10000))*x + (1 + O(3^10000))

            sage: R.<a> = ZqCA(next_prime(10^30)^3, 3); R.prime()
            1000000000000000000000000000057
        """
        # Currently doesn't support polynomials with non-integral coefficients
        self._shift_seed = None
        self._pre_poly = prepoly
        self._implementation = implementation
        if implementation == 'NTL':
            ntl_poly = ntl_ZZ_pX([a.lift() for a in poly.list()], poly.base_ring().prime()**prec)
            if prec <= 30:
                self.prime_pow = PowComputer_ext_maker(poly.base_ring().prime(), prec, prec, prec, True, ntl_poly, "small", "u")
            else:
                self.prime_pow = PowComputer_ext_maker(poly.base_ring().prime(), 30, prec, prec, True, ntl_poly, "big", "u")
            element_class = pAdicZZpXCAElement
        else:
            Zpoly = _make_integral_poly(prepoly, poly.base_ring().prime(), prec)
            cache_limit = min(prec, 30)
            self.prime_pow = PowComputer_flint_maker(poly.base_ring().prime(), cache_limit, prec, prec, False, Zpoly, prec_type='capped-abs')
            element_class = qAdicCappedAbsoluteElement
        UnramifiedExtensionGeneric.__init__(self, poly, prec, print_mode, names, element_class)
        if implementation != 'NTL':
            from qadic_flint_CA import pAdicCoercion_ZZ_CA, pAdicConvert_QQ_CA
            self.register_coercion(pAdicCoercion_ZZ_CA(self))
            self.register_conversion(pAdicConvert_QQ_CA(self))
Пример #2
0
    def __init__(self, prepoly, poly, prec, halt, print_mode, shift_seed, names, implementation='NTL'):
        """
        A fixed modulus representation of Zq.

        INPUT:

            - prepoly -- The original polynomial defining the
              extension.  This could be a polynomial with integer
              coefficients, for example, while poly has coefficients
              in Qp.

            - poly -- The polynomial with coefficients in
              self.base_ring() defining this extension.

            - prec -- The precision cap of this ring.

            - halt -- unused

            - print_mode -- A dictionary of print options.

            - shift_seed -- unused

            - names -- a 4-tuple, (variable_name, residue_name, unramified_subextension_variable_name, uniformizer_name)

        EXAMPLES::

            sage: R.<a> = ZqFM(27,10000); R #indirect doctest
            Unramified Extension of 3-adic Ring of fixed modulus 3^10000 in a defined by (1 + O(3^10000))*x^3 + (O(3^10000))*x^2 + (2 + O(3^10000))*x + (1 + O(3^10000))

            sage: R.<a> = ZqFM(next_prime(10^30)^3, 3); R.prime()
            1000000000000000000000000000057
        """
        self._shift_seed = None
        self._pre_poly = prepoly
        self._implementation = implementation
        if implementation == 'NTL':
            ntl_poly = ntl_ZZ_pX([a.lift() for a in poly.list()], poly.base_ring().prime()**prec)
            self.prime_pow = PowComputer_ext_maker(poly.base_ring().prime(), max(min(prec - 1, 30), 1), prec, prec, False, ntl_poly, "FM", "u")
            element_class = pAdicZZpXFMElement
        else:
            Zpoly = _make_integral_poly(prepoly, poly.base_ring().prime(), prec)
            cache_limit = 0 # prevents caching
            self.prime_pow = PowComputer_flint_maker(poly.base_ring().prime(), cache_limit, prec, prec, False, Zpoly, prec_type='fixed-mod')
            element_class = qAdicFixedModElement
        UnramifiedExtensionGeneric.__init__(self, poly, prec, print_mode, names, element_class)
        if implementation != 'NTL':
            from qadic_flint_FM import pAdicCoercion_ZZ_FM, pAdicConvert_QQ_FM
            self.register_coercion(pAdicCoercion_ZZ_FM(self))
            self.register_conversion(pAdicConvert_QQ_FM(self))
Пример #3
0
    def __init__(self, prepoly, poly, prec, halt, print_mode, shift_seed,
                 names):
        """
        A capped absolute representation of Zq.

        INPUTS::

            - prepoly -- The original polynomial defining the
              extension.  This could be a polynomial with integer
              coefficients, for example, while poly has coefficients
              in Zp.

            - poly -- The polynomial with coefficients in
              self.base_ring() defining this extension.

            - prec -- The precision cap of this ring.

            - halt -- unused

            - print_mode -- A dictionary of print options.

            - shift_seed -- unused

            - names -- a 4-tuple, (variable_name, residue_name, unramified_subextension_variable_name, uniformizer_name)

        EXAMPLES::

            sage: R.<a> = ZqCA(27,10000); R #indirect doctest
            Unramified Extension of 3-adic Ring with capped absolute precision 10000 in a defined by (1 + O(3^10000))*x^3 + (2 + O(3^10000))*x + (1 + O(3^10000))

            sage: R.<a> = ZqCA(next_prime(10^30)^3, 3); R.prime()
            1000000000000000000000000000057
        """
        # Currently doesn't support polynomials with non-integral coefficients
        ntl_poly = ntl_ZZ_pX([a.lift() for a in poly.list()],
                             poly.base_ring().prime()**prec)
        if prec <= 30:
            self.prime_pow = PowComputer_ext_maker(poly.base_ring().prime(),
                                                   prec, prec, prec, True,
                                                   ntl_poly, "small", "u")
        else:
            self.prime_pow = PowComputer_ext_maker(poly.base_ring().prime(),
                                                   30, prec, prec, True,
                                                   ntl_poly, "big", "u")
        self._shift_seed = None
        self._pre_poly = prepoly
        UnramifiedExtensionGeneric.__init__(self, poly, prec, print_mode,
                                            names, pAdicZZpXCAElement)
Пример #4
0
    def __init__(self, prepoly, poly, prec, halt, print_mode, shift_seed,
                 names):
        """
        A fixed modulus representation of Zq.

        INPUTS::

            - prepoly -- The original polynomial defining the
              extension.  This could be a polynomial with integer
              coefficients, for example, while poly has coefficients
              in Qp.

            - poly -- The polynomial with coefficients in
              self.base_ring() defining this extension.

            - prec -- The precision cap of this ring.

            - halt -- unused

            - print_mode -- A dictionary of print options.

            - shift_seed -- unused

            - names -- a 4-tuple, (variable_name, residue_name, unramified_subextension_variable_name, uniformizer_name)

        EXAMPLES::

            sage: R.<a> = ZqFM(27,10000); R #indirect doctest
            Unramified Extension of 3-adic Ring of fixed modulus 3^10000 in a defined by (1 + O(3^10000))*x^3 + (2 + O(3^10000))*x + (1 + O(3^10000))

            sage: R.<a> = ZqFM(next_prime(10^30)^3, 3); R.prime()
            1000000000000000000000000000057
        """
        ntl_poly = ntl_ZZ_pX([a.lift() for a in poly.list()],
                             poly.base_ring().prime()**prec)
        self.prime_pow = PowComputer_ext_maker(poly.base_ring().prime(),
                                               max(min(prec - 1, 30),
                                                   1), prec, prec, False,
                                               ntl_poly, "FM", "u")
        self._shift_seed = None
        self._pre_poly = prepoly
        UnramifiedExtensionGeneric.__init__(self, poly, prec, print_mode,
                                            names, pAdicZZpXFMElement)
Пример #5
0
    def __init__(self, prepoly, poly, prec, halt, print_mode, shift_seed, names):
        """
        A representation of Qq.

        INPUTS::

            - prepoly -- The original polynomial defining the
              extension.  This could be a polynomial with integer
              coefficients, for example, while poly has coefficients
              in Qp.

            - poly -- The polynomial with coefficients in
              self.base_ring() defining this extension.

            - prec -- The precision cap of this ring.

            - halt -- unused

            - print_mode -- A dictionary of print options.

            - shift_seed -- unused

            - names -- a 4-tuple, (variable_name, residue_name, unramified_subextension_variable_name, uniformizer_name)

        EXAMPLES::

            sage: R.<a> = Qq(27,10000); R #indirect doctest
            Unramified Extension of 3-adic Field with capped relative precision 10000 in a defined by (1 + O(3^10000))*x^3 + (O(3^10000))*x^2 + (2 + O(3^10000))*x + (1 + O(3^10000))

            sage: R.<a> = Qq(next_prime(10^30)^3, 3); R.prime()
            1000000000000000000000000000057
        """
        # Currently doesn't support polynomials with non-integral coefficients
        ntl_poly = ntl_ZZ_pX([a.lift() for a in poly.list()], poly.base_ring().prime()**prec)
        if prec <= 30:
            self.prime_pow = PowComputer_ext_maker(poly.base_ring().prime(), prec, prec, prec, True, ntl_poly, "small", "u")
        else:
            self.prime_pow = PowComputer_ext_maker(poly.base_ring().prime(), 30, prec, prec, True, ntl_poly, "big", "u")
        self._shift_seed = None
        self._pre_poly = prepoly
        UnramifiedExtensionGeneric.__init__(self, poly, prec, print_mode, names, pAdicZZpXCRElement)
Пример #6
0
    def __init__(self, prepoly, poly, prec, halt, print_mode, shift_seed, names):
        """
        A fixed modulus representation of Zq.

        INPUTS::

            - prepoly -- The original polynomial defining the
              extension.  This could be a polynomial with integer
              coefficients, for example, while poly has coefficients
              in Qp.

            - poly -- The polynomial with coefficients in
              self.base_ring() defining this extension.

            - prec -- The precision cap of this ring.

            - halt -- unused

            - print_mode -- A dictionary of print options.

            - shift_seed -- unused

            - names -- a 4-tuple, (variable_name, residue_name, unramified_subextension_variable_name, uniformizer_name)

        EXAMPLES::

            sage: R.<a> = ZqFM(27,10000); R #indirect doctest
            Unramified Extension of 3-adic Ring of fixed modulus 3^10000 in a defined by (1 + O(3^10000))*x^3 + (2 + O(3^10000))*x + (1 + O(3^10000))

            sage: R.<a> = ZqFM(next_prime(10^30)^3, 3); R.prime()
            1000000000000000000000000000057
        """
        ntl_poly = ntl_ZZ_pX([a.lift() for a in poly.list()], poly.base_ring().prime()**prec)
        self.prime_pow = PowComputer_ext_maker(poly.base_ring().prime(), max(min(prec - 1, 30), 1), prec, prec, False, ntl_poly, "FM", "u")
        self._shift_seed = None
        self._pre_poly = prepoly
        UnramifiedExtensionGeneric.__init__(self, poly, prec, print_mode, names, pAdicZZpXFMElement)
Пример #7
0
    def __init__(self,
                 prepoly,
                 poly,
                 prec,
                 halt,
                 print_mode,
                 shift_seed,
                 names,
                 implementation='NTL'):
        """
        A fixed modulus representation of Zq.

        INPUT:

            - prepoly -- The original polynomial defining the
              extension.  This could be a polynomial with integer
              coefficients, for example, while poly has coefficients
              in Qp.

            - poly -- The polynomial with coefficients in
              self.base_ring() defining this extension.

            - prec -- The precision cap of this ring.

            - halt -- unused

            - print_mode -- A dictionary of print options.

            - shift_seed -- unused

            - names -- a 4-tuple, (variable_name, residue_name, unramified_subextension_variable_name, uniformizer_name)

        EXAMPLES::

            sage: R.<a> = ZqFM(27,10000); R #indirect doctest
            Unramified Extension of 3-adic Ring of fixed modulus 3^10000 in a defined by (1 + O(3^10000))*x^3 + (O(3^10000))*x^2 + (2 + O(3^10000))*x + (1 + O(3^10000))

            sage: R.<a> = ZqFM(next_prime(10^30)^3, 3); R.prime()
            1000000000000000000000000000057
        """
        self._shift_seed = None
        self._pre_poly = prepoly
        self._implementation = implementation
        if implementation == 'NTL':
            ntl_poly = ntl_ZZ_pX([a.lift() for a in poly.list()],
                                 poly.base_ring().prime()**prec)
            self.prime_pow = PowComputer_ext_maker(poly.base_ring().prime(),
                                                   max(min(prec - 1, 30),
                                                       1), prec, prec, False,
                                                   ntl_poly, "FM", "u")
            element_class = pAdicZZpXFMElement
        else:
            Zpoly = _make_integral_poly(prepoly,
                                        poly.base_ring().prime(), prec)
            cache_limit = 0  # prevents caching
            self.prime_pow = PowComputer_flint_maker(poly.base_ring().prime(),
                                                     cache_limit,
                                                     prec,
                                                     prec,
                                                     False,
                                                     Zpoly,
                                                     prec_type='fixed-mod')
            element_class = qAdicFixedModElement
        UnramifiedExtensionGeneric.__init__(self, poly, prec, print_mode,
                                            names, element_class)
        if implementation != 'NTL':
            from qadic_flint_FM import pAdicCoercion_ZZ_FM, pAdicConvert_QQ_FM
            self.register_coercion(pAdicCoercion_ZZ_FM(self))
            self.register_conversion(pAdicConvert_QQ_FM(self))
Пример #8
0
    def __init__(self,
                 prepoly,
                 poly,
                 prec,
                 halt,
                 print_mode,
                 shift_seed,
                 names,
                 implementation='NTL'):
        """
        A capped absolute representation of Zq.

        INPUT:

            - prepoly -- The original polynomial defining the
              extension.  This could be a polynomial with integer
              coefficients, for example, while poly has coefficients
              in Zp.

            - poly -- The polynomial with coefficients in
              self.base_ring() defining this extension.

            - prec -- The precision cap of this ring.

            - halt -- unused

            - print_mode -- A dictionary of print options.

            - shift_seed -- unused

            - names -- a 4-tuple, (variable_name, residue_name, unramified_subextension_variable_name, uniformizer_name)

        EXAMPLES::

            sage: R.<a> = ZqCA(27,10000); R #indirect doctest
            Unramified Extension of 3-adic Ring with capped absolute precision 10000 in a defined by (1 + O(3^10000))*x^3 + (O(3^10000))*x^2 + (2 + O(3^10000))*x + (1 + O(3^10000))

            sage: R.<a> = ZqCA(next_prime(10^30)^3, 3); R.prime()
            1000000000000000000000000000057
        """
        # Currently doesn't support polynomials with non-integral coefficients
        self._shift_seed = None
        self._pre_poly = prepoly
        self._implementation = implementation
        if implementation == 'NTL':
            ntl_poly = ntl_ZZ_pX([a.lift() for a in poly.list()],
                                 poly.base_ring().prime()**prec)
            if prec <= 30:
                self.prime_pow = PowComputer_ext_maker(
                    poly.base_ring().prime(), prec, prec, prec, True, ntl_poly,
                    "small", "u")
            else:
                self.prime_pow = PowComputer_ext_maker(
                    poly.base_ring().prime(), 30, prec, prec, True, ntl_poly,
                    "big", "u")
            element_class = pAdicZZpXCAElement
        else:
            Zpoly = _make_integral_poly(prepoly,
                                        poly.base_ring().prime(), prec)
            cache_limit = min(prec, 30)
            self.prime_pow = PowComputer_flint_maker(poly.base_ring().prime(),
                                                     cache_limit,
                                                     prec,
                                                     prec,
                                                     False,
                                                     Zpoly,
                                                     prec_type='capped-abs')
            element_class = qAdicCappedAbsoluteElement
        UnramifiedExtensionGeneric.__init__(self, poly, prec, print_mode,
                                            names, element_class)
        if implementation != 'NTL':
            from qadic_flint_CA import pAdicCoercion_ZZ_CA, pAdicConvert_QQ_CA
            self.register_coercion(pAdicCoercion_ZZ_CA(self))
            self.register_conversion(pAdicConvert_QQ_CA(self))