def render_from_file(meta_data, max_indx=5):
    clear_env()
    car_shape, car_rot, car_trans, cam_location, cam_rotation, img_fov, img_size, kpt_dict = load_meta_data(
        meta_data)
    request('vset /camera/1/location {:.6f} {:.6f} {:.6f}'.format(
        cam_location[0], cam_location[1], cam_location[2]))
    request('vset /camera/1/rotation {:.6f} {:.6f} {:.6f}'.format(
        cam_rotation[0], cam_rotation[1], cam_rotation[2]))
    request('vset /camera/1/fov {:.6f}'.format(img_fov))

    car_group = Car_Manager()

    if max_indx <= 0:
        max_indx = max_indx + len(car_shape)

    car_color = [[i, 0, 0] for i in range(len(car_trans))]

    print(len(car_shape))
    for i, shape in enumerate(car_shape):
        if i >= max_indx:
            break
        car_group.add_car(shape)
        car_group.trans_car(car_trans[i], "car{}".format(i))
        #car_group.trans_car([0,0,0], "car{}".format(i))
        car_group.rot_car(car_rot[i], "car{}".format(i))
        car_group.annotate_car(car_color[i], "car{}".format(i))
    car_group.flush()

    cwd_root, _ = os.path.split(meta_data)
    base_dir = join(cwd_root, "render_res")
    if DEBUG: print("Finished write object pose data ")
    time.sleep(0.1)
    if DEBUG: print("Acquiring image ...")
    img = read_png(request('vget /camera/1/lit png'))
    cv2.imwrite(join(base_dir, "car_arrangment.png"), img[:, :, 2::-1])

    mask = read_png(request('vget /camera/1/object_mask png'))
    cv2.imwrite(join(base_dir, "car_mask.png"), mask[:, :, 2::-1])

    png = read_png(request('vget /camera/0/lit png'))
    cv2.imwrite(join(base_dir, "overview.png"), png[:, :, 2::-1])

    for i in range(len(car_color)):
        obj_mask = udb.get_mask(mask, car_color[i])
        [ys, xs] = np.where(obj_mask)
        bbox = [min(xs), max(xs), min(ys), max(ys)]
        print(bbox)
        obj_img = udb.mask_img(img, obj_mask)
        bbox_img = img[min(ys):max(ys), min(xs):max(xs), :]
        cv2.imwrite(join(base_dir, "car%d_seg.png" % i), obj_img[:, :, 2::-1])
        cv2.imwrite(join(base_dir, "car%d_bbox.png" % i), bbox_img[:, :,
                                                                   2::-1])

    if DEBUG: print("Finished write image to files")

    return True
Пример #2
0
def main(args):
    udb.connect('localhost', 9900)

    global_animal = args.animal

    # reset the program
    map_name = 'AnimalDataCapture'
    udb.client.request('vset /action/game/level {map_name}'.format(**locals()))
    udb.client.request('vset /camera/0/location 500 0 300')
    udb.client.request('vset /camera/0/rotation -20 180 0')

    val2017_dir = os.path.abspath(args.random_texture_path)
    bg_path_list = glob_images(val2017_dir)
    texture_path_list = glob_images(val2017_dir)

    render_params = load_render_params(global_animal)
    random.shuffle(render_params)

    obj_id = 'tiger'
    animal = udb.CvAnimal(obj_id)
    animal.spawn()

    # acquire offset
    obj_loc = udb.client.request('vget /object/tiger/location')
    obj_loc = [float(v) for v in obj_loc.split(' ')]
    offset = obj_loc[2]

    r, g, b = 155, 168, 157
    animal.set_mask_color(r, g, b)
    if global_animal == 'tiger':
        animal.set_mesh(udb.asset.MESH_TIGER)
    elif global_animal == 'horse':
        animal.set_mesh(udb.asset.MESH_HORSE)
    elif global_animal == 'domestic_sheep':
        animal.set_mesh(udb.asset.MESH_DOMESTIC_SHEEP)
    elif global_animal == 'hellenic_hound':
        animal.set_mesh(udb.asset.MESH_HELLENIC_HOUND)
    elif global_animal == 'elephant':
        animal.set_mesh(udb.asset.MESH_ELEPHANT)

    env = udb.CvEnv()

    output_dir = args.output_path
    if not os.path.isdir(output_dir): os.makedirs(output_dir)

    img_idx = 0
    for i, param in enumerate(tqdm(render_params)):
        mesh, anim, ratio, dist, az, el = param
        filename = make_filename(img_idx, mesh, anim, ratio, dist, az, el)

        sky_texture = random.choice(bg_path_list)
        floor_texture = random.choice(bg_path_list)
        animal_texture = random.choice(texture_path_list)

        # Update the scene
        env.set_random_light()
        env.set_floor(floor_texture)
        env.set_sky(sky_texture)
        if args.use_random_texture:
            animal.set_texture(animal_texture)
        animal.set_animation(anim, ratio)

        #        if global_animal=='horse':
        #            # set different original textures
        #            _, animal_texture = random.choice(list(udb.asset.animal.horse_material.items()))
        #            _, animal_texture_fur = random.choice(list(udb.asset.animal.horse_material.items()))
        #            animal.set_material(0, animal_texture)
        #            animal.set_material(1, animal_texture_fur)

        # Capture data
        animal.set_tracking_camera(dist, az, el)
        img = animal.get_img()
        seg = animal.get_seg()
        depth = animal.get_depth()
        mask = udb.get_mask(seg, [r, g, b])

        # get kpts
        ## get cam_loc and cam_rot
        cam_loc, cam_rot = get_camera_params()
        cam_loc = [float(item) for item in cam_loc.split(' ')]
        cam_rot = [float(item) for item in cam_rot.split(' ')]

        ## transform keypoints
        kp_3d_array = parse_kpts(filename, offset)
        kpts, kpts_z = transform_kpts(cam_loc, cam_rot, kp_3d_array, depth)

        ## transform images and kpts
        #TODO get rid of PIL
        img = Image.fromarray(img[:, :, :3])
        seg_mask = np.zeros((mask.shape[0], mask.shape[1]), dtype=np.uint8)
        seg_mask[mask == False] = 0  # tiger/horse
        seg_mask[mask == True] = 255  # tiger/horse

        # # save imgs
        if global_animal == 'tiger':
            kp_18_id = [
                2679, 2753, 2032, 1451, 1287, 3085, 1632, 229, 1441, 1280,
                2201, 1662, 266, 158, 270, 152, 219, 129
            ]
        elif global_animal == 'horse':
            kp_18_id = [
                1718, 1684, 1271, 1634, 1650, 1643, 1659, 925, 392, 564, 993,
                726, 1585, 1556, 427, 1548, 967, 877
            ]
        elif global_animal == 'domestic_sheep':
            kp_18_id = [
                2046, 1944, 1267, 1875, 1900, 1868, 1894, 687, 173, 1829, 1422,
                821, 624, 580, 622, 575, 1370, 716
            ]
        elif global_animal == 'hellenic_hound':
            kp_18_id = [
                2028, 2580, 912, 878, 977, 1541, 1734, 480, 799, 1575, 1446,
                602, 755, 673, 780, 1580, 466, 631
            ]
        elif global_animal == 'elephant':
            kp_18_id = [
                1980, 2051, 1734, 2122, 2155, 2070, 2166, 681, 923, 1442, 1041,
                1528, 78, 599, 25, 595, 171, 570
            ]

        if sum(kpts[kp_18_id, 2]) >= 6:
            imageio.imwrite(os.path.join(output_dir, filename + '_img.png'),
                            img)
            imageio.imwrite(os.path.join(output_dir, filename + '_seg.png'),
                            seg_mask)
            np.save(os.path.join(output_dir, filename + '_depth.npy'), depth)
            np.save(os.path.join(output_dir, filename + '_kpts.npy'), kpts)
            np.save(os.path.join(output_dir, filename + '_kpts_z.npy'), kpts_z)

            img_idx += 1
            if img_idx > args.num_imgs - 1:
                break
Пример #3
0
def retrieve(animal, num_images, use_random_texture):
    udb.connect('localhost', 9900)

    # reset the program
    map_name = 'AnimalDataCapture'
    udb.client.request('vset /action/game/level {map_name}'.format(**locals()))
    udb.client.request('vset /camera/0/location 500 0 300')
    udb.client.request('vset /camera/0/rotation -20 180 0')

    random_texture_path = "val2017"
    # this path needs to be on the server!!
    val2017_dir = "/export/home/ffeldman/git/Learning-from-Synthetic-Animals/data_generation/" + random_texture_path  # os.path.abspath(random_texture_path)
    beautiful_textures = "/export/home/ffeldman/git/Learning-from-Synthetic-Animals/data_generation/texture_images/"
    bg_path_list = glob_images(val2017_dir)
    texture_path_list = glob_images(val2017_dir)
    beautiful_textures_path_list = glob_images(beautiful_textures)

    output_path = f"synthetic_animals_triplet/{animal}/"
    global_animal = animal

    render_params = load_render_params(global_animal)
    random.shuffle(render_params)
    obj_id = 'tiger'
    animal = udb.CvAnimal(obj_id)
    animal.spawn()

    # acquire offset
    obj_loc = udb.client.request('vget /object/tiger/location')
    obj_loc = [float(v) for v in obj_loc.split(' ')]
    offset = obj_loc[2]

    r, g, b = 155, 168, 157
    animal.set_mask_color(r, g, b)
    if global_animal == 'tiger':
        animal.set_mesh(udb.asset.MESH_TIGER)
    elif global_animal == 'horse':
        animal.set_mesh(udb.asset.MESH_HORSE)
    elif global_animal == 'domestic_sheep':
        animal.set_mesh(udb.asset.MESH_DOMESTIC_SHEEP)
    elif global_animal == 'hellenic_hound':  # Dog
        animal.set_mesh(udb.asset.MESH_HELLENIC_HOUND)
    elif global_animal == 'elephant':
        animal.set_mesh(udb.asset.MESH_ELEPHANT)
    # from here todo!
    elif global_animal == 'cat':
        animal.set_mesh(udb.asset.MESH_CAT)
    # elif global_animal=='zebra':
    #    animal.set_mesh(udb.asset.MESH_CAT)
    # elif global_animal=='celtic_wolfhound': # Dog
    #    animal.set_mesh(udb.asset.MESH_CAT)
    # elif global_animal=='pug': # mops -> dog
    #    animal.set_mesh(udb.asset.MESH_CAT)
    # elif global_animal=='cane_corso': # a dog
    #    animal.set_mesh(udb.asset.MESH_CAT)
    elif global_animal == 'scotland_cattle':  # a scottish cow
        animal.set_mesh(udb.asset.MESH_SCOTTLAND_CATTLE)
    # elif global_animal=='longhorn_cattle': # a cow
    #    animal.set_mesh(udb.asset.MESH_CAT)
    # elif global_animal=='longhorn_cattle_v2': # a cow
    #    animal.set_mesh(udb.asset.MESH_CAT)

    env = udb.CvEnv()

    output_dir = output_path
    if not os.path.isdir(output_dir): os.makedirs(output_dir)

    # masked_frames = []
    # whitened_frames = []
    # frame_names = []
    # extracted_kpts = []

    p0a0_frame_names = []
    p0a1_frame_names = []
    p1a1_frame_names = []
    p1a0_frame_names = []
    p0a0_extracted_kpts = []
    p0a1_extracted_kpts = []
    p1a1_extracted_kpts = []
    p1a0_extracted_kpts = []
    p0a0_list_whitened = []
    p0a1_list_whitened = []
    p1a1_list_whitened = []
    p1a0_list_whitened = []
    p0a0_list_masked = []
    p0a1_list_masked = []
    p1a1_list_masked = []
    p1a0_list_masked = []

    img_idx = 0
    sky_texture = "/export/home/ffeldman/Masterarbeit/data/white.jpg"  # random.choice(bg_path_list)
    floor_texture = "/export/home/ffeldman/Masterarbeit/data/white.jpg"  # random.choice(bg_path_list)
    # random.choice(texture_path_list)
    # process_params = random.choices(render_params, k=num_images)
    random.shuffle(render_params)
    for i, param in enumerate(tqdm(render_params)):
        random_animal_texture = random.randint(
            0,
            len(beautiful_textures_path_list) - 1)
        animal_texture = beautiful_textures_path_list[random_animal_texture]
        animal.set_texture(animal_texture)
        mesh, anim, ratio, dist, az, el = param
        filename = make_filename(img_idx, mesh, anim, ratio, dist, az, el)

        p0a0, p0a1, p1a1, p1a0 = False, False, False, False
        p0a0_tried = False
        goto_p1a1 = False

        def check_triplet():
            return p0a0 and p0a1 and p1a1 and p1a0

        # Update the scene
        env.set_random_light()
        break_while = False
        #print("Here before while.")
        while not check_triplet():
            print("Image idx:", img_idx)
            appearance_zero = beautiful_textures_path_list[
                random_animal_texture]
            for triplet in ["p0a0", "p0a1", "p1a1", "p1a0"]:
                print(triplet, p0a0, p0a1, p1a1, p1a0)
                if triplet == "p0a0":
                    if p0a0_tried and p0a0:
                        goto_p1a1 = True
                        continue
                    p0a0_tried = True
                elif triplet == "p0a1":
                    if (p0a0_tried and not p0a0):
                        # p0a0 was false so p0a1 will be false as well
                        # we set all of them true to break the while loop
                        p0a0, p0a1, p1a1, p1a0 = True, True, True, True
                        break_while = True
                        #print("Breaking the loop.")
                        break
                    if goto_p1a1:
                        continue
                    # update the appearance but leave the pose as is
                    random_texture = random_animal_texture
                    while random_animal_texture == random_texture:
                        random_texture = random.randint(
                            0,
                            len(beautiful_textures_path_list) - 1)
                        animal_texture = beautiful_textures_path_list[
                            random_texture]
                    animal.set_texture(animal_texture)
                elif triplet == "p1a1":
                    if p1a1:
                        continue
                    if break_while:
                        break
                    # update the pose but leave the appearance as is
                    # print("Setting new pose.")
                    param = random.choice(render_params)
                    mesh, anim, ratio, dist, az, el = param
                elif triplet == "p1a0":
                    animal.set_texture(appearance_zero)

                    if break_while:
                        break
                    if not p1a1:
                        continue

                env.set_floor(floor_texture)
                env.set_sky(sky_texture)

                animal.set_animation(anim, ratio)

                # Capture data
                animal.set_tracking_camera(dist, az, el)
                shift_camera_animal(global_animal)

                img = animal.get_img()
                seg = animal.get_seg()
                depth = animal.get_depth()
                mask = udb.get_mask(seg, [r, g, b])

                # get kpts
                ## get cam_loc and cam_rot
                cam_loc, cam_rot = get_camera_params()
                cam_loc = [float(item) for item in cam_loc.split(' ')]
                cam_rot = [float(item) for item in cam_rot.split(' ')]

                ## transform keypoints
                kp_3d_array = parse_kpts(filename, offset)
                kpts, kpts_z = transform_kpts(cam_loc, cam_rot, kp_3d_array,
                                              depth)

                ## transform images and kpts
                img = Image.fromarray(img[:, :, :3])
                seg_mask = np.zeros((mask.shape[0], mask.shape[1]),
                                    dtype=np.uint8)
                seg_mask[mask == False] = 0  # tiger/horse
                seg_mask[mask == True] = 255  # tiger/horse

                # # save imgs
                if global_animal == 'tiger':
                    kp_18_id = [
                        2679, 2753, 2032, 1451, 1287, 3085, 1632, 229, 1441,
                        1280, 2201, 1662, 266, 158, 270, 152, 219, 129
                    ]
                elif global_animal == 'horse':
                    kp_18_id = [
                        1718, 1684, 1271, 1634, 1650, 1643, 1659, 925, 392,
                        564, 993, 726, 1585, 1556, 427, 1548, 967, 877
                    ]
                elif global_animal == 'domestic_sheep':
                    kp_18_id = [
                        2046, 1944, 1267, 1875, 1900, 1868, 1894, 687, 173,
                        1829, 1422, 821, 624, 580, 622, 575, 1370, 716
                    ]
                elif global_animal == 'hellenic_hound':
                    kp_18_id = [
                        2028, 2580, 912, 878, 977, 1541, 1734, 480, 799, 1575,
                        1446, 602, 755, 673, 780, 1580, 466, 631
                    ]
                elif global_animal == 'elephant':
                    kp_18_id = [
                        1980, 2051, 1734, 2122, 2155, 2070, 2166, 681, 923,
                        1442, 1041, 1528, 78, 599, 25, 595, 171, 570
                    ]
                else:
                    print(
                        "WARNING THIS ANIMAL HAS NO CORRECT KEYPOINTS YET - DO NOT USE!!"
                    )
                    kp_18_id = [
                        2028, 2580, 912, 878, 977, 1541, 1734, 480, 799, 1575,
                        1446, 602, 755, 673, 780, 1580, 466, 631
                    ]
                if not sum(kpts[kp_18_id, 2]) >= 4:
                    print(triplet, "Not enough keypoints.")
                if sum(kpts[kp_18_id, 2]) >= 4:

                    arr = kpts[kp_18_id]
                    # set non visible points to zero
                    arr[arr[:, 2] == 0] = [0, 0, 0]
                    arr = arr[:, :2]
                    # create output folder for images e.g. synthetic_animals/{animal}/{video}
                    sequence_output_dir = output_dir
                    sequence_dir_filename = os.path.join(
                        sequence_output_dir,
                        filename.replace(".png", f"_{triplet}.png"))
                    filename_mask = filename.replace(".png",
                                                     f"_mask_{triplet}.png")
                    filename_mask_whitened = filename.replace(
                        ".png", f"_mask_white_{triplet}.png")
                    sequence_dir_filename_mask = os.path.join(
                        sequence_output_dir, filename_mask)
                    sequence_dir_filename_mask_whitened = os.path.join(
                        sequence_output_dir, filename_mask_whitened)
                    if not os.path.isdir(sequence_output_dir):
                        os.makedirs(sequence_output_dir)
                    whitened_img = np.array(copy.deepcopy(img))
                    whitened_img[~mask] = 255
                    imageio.imwrite(sequence_dir_filename_mask, seg_mask)
                    imageio.imwrite(sequence_dir_filename_mask_whitened,
                                    whitened_img)
                    imageio.imwrite(sequence_dir_filename, img)

                    if triplet == "p0a0":
                        p0a0 = True
                        p0a0_list_whitened.append(
                            os.path.join(sequence_output_dir,
                                         filename_mask_whitened))
                        p0a0_list_masked.append(
                            os.path.join(sequence_output_dir, filename_mask))
                        p0a0_frame_names.append(sequence_dir_filename)
                        p0a0_extracted_kpts.append(arr)
                    if triplet == "p0a1":
                        p0a1 = True
                        p0a1_list_whitened.append(
                            os.path.join(sequence_output_dir,
                                         filename_mask_whitened))
                        p0a1_list_masked.append(
                            os.path.join(sequence_output_dir, filename_mask))
                        p0a1_frame_names.append(sequence_dir_filename)
                        p0a1_extracted_kpts.append(arr)
                    if triplet == "p1a1":
                        p1a1 = True
                        p1a1_list_whitened.append(
                            os.path.join(sequence_output_dir,
                                         filename_mask_whitened))
                        p1a1_list_masked.append(
                            os.path.join(sequence_output_dir, filename_mask))
                        p1a1_frame_names.append(sequence_dir_filename)
                        p1a1_extracted_kpts.append(arr)
                    if triplet == "p1a0":
                        p1a0 = True
                        p1a0_list_whitened.append(
                            os.path.join(sequence_output_dir,
                                         filename_mask_whitened))
                        p1a0_list_masked.append(
                            os.path.join(sequence_output_dir, filename_mask))
                        p1a0_frame_names.append(sequence_dir_filename)
                        p1a0_extracted_kpts.append(arr)
                        img_idx += 1
                    if img_idx == num_images:
                        # assert len(p0a0_list_whitened) == len(p0a0_list_masked) == len(p0a0_frame_names) == len(
                        #    p0a0_extracted_kpts)
                        return p0a0_list_whitened, p0a0_list_masked, p0a0_frame_names, \
                               np.array(p0a0_extracted_kpts), p0a1_list_whitened, p0a1_list_masked, \
                               p0a1_frame_names, np.array(p0a1_extracted_kpts), p1a1_list_whitened, p1a1_list_masked, \
                               p1a1_frame_names, np.array(p1a1_extracted_kpts), p1a0_list_whitened, p1a0_list_masked, \
                               p1a0_frame_names, np.array(p1a0_extracted_kpts)
Пример #4
0
def main():
    udb.connect('localhost', 9000)

    # reset the program
    map_name = 'AnimalDataCapture'
    udb.client.request('vset /action/game/level {map_name}'.format(**locals()))
    udb.client.request('vset /camera/0/location 400 0 300')
    udb.client.request('vset /camera/0/rotation 0 180 0')

    val2017_dir = '/data/qiuwch/val2017'
    bg_path_list = glob_images(val2017_dir)
    texture_path_list = glob_images(val2017_dir)

    render_params = load_render_params()
    # random.shuffle(render_params)

    num_img = 0

    obj_id = 'tiger'
    animal = udb.CvAnimal(obj_id)
    animal.spawn()

    r, g, b = 155, 168, 157
    animal.set_mask_color(r, g, b)
    animal.set_mesh(udb.asset.MESH_TIGER)

    env = udb.CvEnv()

    # for delay in range(10):
    for delay in [0]:
        output_dir = os.path.join(str(delay), 'generated_data')
        mask_dir = os.path.join(str(delay), 'masked')
        if not os.path.isdir(output_dir): os.makedirs(output_dir)
        if not os.path.isdir(mask_dir): os.makedirs(mask_dir)

        for i, param in enumerate(tqdm(render_params)):
            mesh, anim, ratio, dist, az, el = param
            filename = make_filename(i, mesh, anim, ratio, dist, az, el)

            # sky_texture = random.choice(bg_path_list)
            # floor_texture = random.choice(bg_path_list)
            # animal_texture = random.choice(texture_path_list)

            # Update the scene
            # env.set_floor(floor_texture)
            # env.set_sky(sky_texture)
            # animal.set_texture(animal_texture) # this will crash
            animal.set_animation(anim, ratio)

            # Capture data
            animal.set_tracking_camera(dist, az, el)
            img = animal.get_img()
            seg = animal.get_seg()
            depth = animal.get_depth()
            mask = udb.get_mask(seg, [r, g, b])
            obj_img = udb.mask_img(img, mask)

            imageio.imwrite(os.path.join(output_dir, filename + '_img.png'),
                            img)
            imageio.imwrite(os.path.join(output_dir, filename + '_seg.png'),
                            seg)
            np.save(os.path.join(output_dir, filename + '_depth.npy'), depth)
            imageio.imwrite(os.path.join(mask_dir, filename + '_mask.png'),
                            obj_img)
def render_from_file(meta_data, max_indx=5):
    clear_env()
    car_shape, car_rot, car_trans, cam_location, cam_rotation, img_fov, img_size, kpt_dict = load_meta_data(
        meta_data)
    request('vset /camera/1/location {:.6f} {:.6f} {:.6f}'.format(
        cam_location[0], cam_location[1], cam_location[2]))
    request('vset /camera/1/rotation {:.6f} {:.6f} {:.6f}'.format(
        cam_rotation[0], cam_rotation[1], cam_rotation[2]))
    request('vset /camera/1/fov {:.6f}'.format(img_fov))

    car_group = Car_Manager()

    # if max_indx <= 0:
    #     max_indx = max_indx + len(car_shape)

    #num_obj = min([len(car_trans), max_indx, 2])
    num_obj = 2
    car_color = [[i, 0, 0] for i in range(num_obj)]

    shape = car_shape[0]
    # for i in range(num_obj):
    #     car_group.add_car(shape, shape_lib="ShapenetKeypoint")
    #     #car_group.trans_car(car_trans[i], "car{}".format(i))
    #     car_group.trans_car([0, 100*i,150*i+100], "car{}".format(i))
    #     car_group.rot_car([0,0,0], "car{}".format(i))
    #     car_group.annotate_car(car_color[i], "car{}".format(i))

    with open("example/car_activity/render_shape.json", "r") as f:
        data_render = json.load(f)

    trans_model = data_render[shape]["trans"]

    i = 0
    car_group.add_car(shape, scale=(-1, 1, 1))
    print(trans_model)
    car_group.trans_car([
        trans_model[0] * 500, trans_model[2] * 500, 200 + trans_model[1] * 500
    ], "car{}".format(i))
    car_group.rot_car([0, 90, 0], "car{}".format(i))
    car_group.annotate_car(car_color[i], "car{}".format(i))
    i = 1
    car_group.add_car(shape, shape_lib="ShapenetKeypoint")
    car_group.trans_car([0, 0, 200], "car{}".format(i))
    car_group.rot_car([0, 0, 0], "car{}".format(i))
    car_group.annotate_car(car_color[i], "car{}".format(i))

    car_group.flush()

    cwd_root, _ = os.path.split(meta_data)
    base_dir = join(cwd_root, "render_res")
    if DEBUG: print("Finished write object pose data ")
    time.sleep(0.1)
    if DEBUG: print("Acquiring image ...")
    img = read_png(request('vget /camera/1/lit png'))
    cv2.imwrite(join(base_dir, "car_arrangment.png"), img[:, :, 2::-1])

    mask = read_png(request('vget /camera/1/object_mask png'))
    cv2.imwrite(join(base_dir, "car_mask.png"), mask[:, :, 2::-1])

    png = read_png(request('vget /camera/0/lit png'))
    cv2.imwrite(join(base_dir, "overview.png"), png[:, :, 2::-1])

    for i in range(len(car_color)):
        obj_mask = udb.get_mask(mask, car_color[i])
        [ys, xs] = np.where(obj_mask)
        bbox = [min(xs), max(xs), min(ys), max(ys)]
        print(bbox)
        obj_img = udb.mask_img(img, obj_mask)
        bbox_img = img[min(ys):max(ys), min(xs):max(xs), :]
        cv2.imwrite(join(base_dir, "car%d_seg.png" % i), obj_img[:, :, 2::-1])
        cv2.imwrite(join(base_dir, "car%d_bbox.png" % i), bbox_img[:, :,
                                                                   2::-1])

    if DEBUG: print("Finished write image to files")

    return True
Пример #6
0
udb.client.request('vset /action/game/level {map_name}'.format(**locals()))
udb.client.request('vset /camera/0/location 400 0 300')
udb.client.request('vset /camera/0/rotation 0 180 0')

obj_id = 'tiger'
animal = udb.CvAnimal(obj_id)
animal.spawn()

r, g, b = 155, 168, 157
animal.set_mask_color(r, g, b)
animal.set_mesh(udb.asset.MESH_TIGER)
animal.set_tracking_camera(350, 0, -5)

for i, param in enumerate(tqdm(params)):
    anim, ratio, key = param
    animal.set_animation(anim, ratio)
    # animal.set_tracking_camera(350, 0, -5)
    # time.sleep(5)
    print(animal.get_animation_frames(anim))

    img = animal.get_img()
    seg = animal.get_seg()
    depth = animal.get_depth()
    mask = udb.get_mask(seg, [r, g, b])
    obj_img = udb.mask_img(img, mask)

    imageio.imwrite('%s_im.png' % key, img)
    imageio.imwrite('%s_seg.png' % key, seg)
    np.save('%s_depth.npy' % key, depth)
    imageio.imwrite('%s_mask.png' % key, obj_img)
Пример #7
0
def retrieve(animal, num_videos, num_images, use_random_texture):
    udb.connect('localhost', 9900)

    # reset the program
    map_name = 'AnimalDataCapture'
    udb.client.request('vset /action/game/level {map_name}'.format(**locals()))
    udb.client.request('vset /camera/0/location 500 0 300')
    udb.client.request('vset /camera/0/rotation -20 180 0')

    random_texture_path = "val2017"
    # this path needs to be on the server!!
    val2017_dir = "/export/home/ffeldman/git/Learning-from-Synthetic-Animals/data_generation/" + random_texture_path  #os.path.abspath(random_texture_path)
    beautiful_textures = "/export/home/ffeldman/git/Learning-from-Synthetic-Animals/data_generation/texture_images/"
    bg_path_list = glob_images(val2017_dir)
    texture_path_list = glob_images(val2017_dir)
    beautiful_textures_path_list = glob_images(beautiful_textures)

    output_path = f"synthetic_animals/{animal}/"
    global_animal = animal

    render_params = load_render_params(global_animal)
    random.shuffle(render_params)
    obj_id = 'tiger'
    animal = udb.CvAnimal(obj_id)
    animal.spawn()

    # acquire offset
    obj_loc = udb.client.request('vget /object/tiger/location')
    obj_loc = [float(v) for v in obj_loc.split(' ')]
    offset = obj_loc[2]

    r, g, b = 155, 168, 157
    animal.set_mask_color(r, g, b)
    if global_animal == 'tiger':
        animal.set_mesh(udb.asset.MESH_TIGER)
    elif global_animal == 'horse':
        animal.set_mesh(udb.asset.MESH_HORSE)
    elif global_animal == 'domestic_sheep':
        animal.set_mesh(udb.asset.MESH_DOMESTIC_SHEEP)
    elif global_animal == 'hellenic_hound':  #Dog
        animal.set_mesh(udb.asset.MESH_HELLENIC_HOUND)
    elif global_animal == 'elephant':
        animal.set_mesh(udb.asset.MESH_ELEPHANT)
    # from here todo!
    elif global_animal == 'cat':
        animal.set_mesh(udb.asset.MESH_CAT)
    #elif global_animal=='zebra':
    #    animal.set_mesh(udb.asset.MESH_CAT)
    #elif global_animal=='celtic_wolfhound': # Dog
    #    animal.set_mesh(udb.asset.MESH_CAT)
    #elif global_animal=='pug': # mops -> dog
    #    animal.set_mesh(udb.asset.MESH_CAT)
    #elif global_animal=='cane_corso': # a dog
    #    animal.set_mesh(udb.asset.MESH_CAT)
    elif global_animal == 'scotland_cattle':  # a scottish cow
        animal.set_mesh(udb.asset.MESH_SCOTTLAND_CATTLE)
    #elif global_animal=='longhorn_cattle': # a cow
    #    animal.set_mesh(udb.asset.MESH_CAT)
    #elif global_animal=='longhorn_cattle_v2': # a cow
    #    animal.set_mesh(udb.asset.MESH_CAT)

    env = udb.CvEnv()

    output_dir = output_path
    if not os.path.isdir(output_dir): os.makedirs(output_dir)

    masked_frames = []
    whitened_frames = []
    frame_names = []
    extracted_kpts = []
    fid = []  # fram id for sequence dataset
    vids = []  # list of video ids
    vid = -1  # video id
    for video in range(num_videos):
        vid += 1
        img_idx = 0
        sky_texture = "/export/home/ffeldman/Masterarbeit/data/white.jpg"  #random.choice(bg_path_list)
        floor_texture = "/export/home/ffeldman/Masterarbeit/data/white.jpg"  #random.choice(bg_path_list)
        animal_texture = beautiful_textures_path_list[
            video]  # random.choice(texture_path_list)
        if use_random_texture:
            # Randomly sets the texture for a sequence of images
            animal.set_texture(animal_texture)
        #process_params = random.choices(render_params, k=num_images)
        random.shuffle(render_params)
        for i, param in enumerate(tqdm(render_params)):
            mesh, anim, ratio, dist, az, el = param
            filename = make_filename(img_idx, mesh, anim, ratio, dist, az, el)
            # Update the scene
            env.set_random_light()
            env.set_floor(floor_texture)
            env.set_sky(sky_texture)

            animal.set_animation(anim, ratio)

            #        if global_animal=='horse':
            #            # set different original textures
            #            _, animal_texture = random.choice(list(udb.asset.animal.horse_material.items()))
            #            _, animal_texture_fur = random.choice(list(udb.asset.animal.horse_material.items()))
            #            animal.set_material(0, animal_texture)
            #            animal.set_material(1, animal_texture_fur)

            # Capture data
            animal.set_tracking_camera(dist, az, el)
            shift_camera_animal(global_animal)

            img = animal.get_img()
            seg = animal.get_seg()
            depth = animal.get_depth()
            mask = udb.get_mask(seg, [r, g, b])

            # get kpts
            ## get cam_loc and cam_rot
            cam_loc, cam_rot = get_camera_params()
            cam_loc = [float(item) for item in cam_loc.split(' ')]
            cam_rot = [float(item) for item in cam_rot.split(' ')]

            ## transform keypoints
            kp_3d_array = parse_kpts(filename, offset)
            kpts, kpts_z = transform_kpts(cam_loc, cam_rot, kp_3d_array, depth)

            ## transform images and kpts
            img = Image.fromarray(img[:, :, :3])
            seg_mask = np.zeros((mask.shape[0], mask.shape[1]), dtype=np.uint8)
            seg_mask[mask == False] = 0  # tiger/horse
            seg_mask[mask == True] = 255  # tiger/horse

            # # save imgs
            if global_animal == 'tiger':
                kp_18_id = [
                    2679, 2753, 2032, 1451, 1287, 3085, 1632, 229, 1441, 1280,
                    2201, 1662, 266, 158, 270, 152, 219, 129
                ]
            elif global_animal == 'horse':
                kp_18_id = [
                    1718, 1684, 1271, 1634, 1650, 1643, 1659, 925, 392, 564,
                    993, 726, 1585, 1556, 427, 1548, 967, 877
                ]
            elif global_animal == 'domestic_sheep':
                kp_18_id = [
                    2046, 1944, 1267, 1875, 1900, 1868, 1894, 687, 173, 1829,
                    1422, 821, 624, 580, 622, 575, 1370, 716
                ]
            elif global_animal == 'hellenic_hound':
                kp_18_id = [
                    2028, 2580, 912, 878, 977, 1541, 1734, 480, 799, 1575,
                    1446, 602, 755, 673, 780, 1580, 466, 631
                ]
            elif global_animal == 'elephant':
                kp_18_id = [
                    1980, 2051, 1734, 2122, 2155, 2070, 2166, 681, 923, 1442,
                    1041, 1528, 78, 599, 25, 595, 171, 570
                ]
            else:
                print(
                    "WARNING THIS ANIMAL HAS NO CORRECT KEYPOINTS YET - DO NOT USE!!"
                )
                kp_18_id = [
                    2028, 2580, 912, 878, 977, 1541, 1734, 480, 799, 1575,
                    1446, 602, 755, 673, 780, 1580, 466, 631
                ]

            #if sum(kpts[kp_18_id,2]) < 6:
            #    print(kpts[kpts[:,2]>0].shape)
            #    #import pdb
            #    #pdb.set_trace()

            if sum(kpts[kp_18_id, 2]) >= 4:
                arr = kpts[kp_18_id]
                # set non visible points to zero
                arr[arr[:, 2] == 0] = [0, 0, 0]
                arr = arr[:, :2]
                # create output folder for images e.g. synthetic_animals/{animal}/{video}
                sequence_output_dir = output_dir + str(video)
                sequence_dir_filename = os.path.join(sequence_output_dir,
                                                     filename)
                filename_mask = filename.replace(".png", "_mask.png")
                filename_mask_whitened = filename.replace(
                    ".png", "_mask_white.png")
                sequence_dir_filename_mask = os.path.join(
                    sequence_output_dir, filename_mask)
                sequence_dir_filename_mask_whitened = os.path.join(
                    sequence_output_dir, filename_mask_whitened)
                if not os.path.isdir(sequence_output_dir):
                    os.makedirs(sequence_output_dir)
                whitened_img = np.array(copy.deepcopy(img))
                whitened_img[~mask] = 255
                imageio.imwrite(sequence_dir_filename_mask, seg_mask)
                imageio.imwrite(sequence_dir_filename_mask_whitened,
                                whitened_img)
                imageio.imwrite(sequence_dir_filename, img)
                masked_frames.append(
                    os.path.join(sequence_output_dir, filename_mask))
                whitened_frames.append(
                    os.path.join(sequence_output_dir, filename_mask_whitened))
                frame_names.append(sequence_dir_filename)
                extracted_kpts.append(arr)
                fid.append(img_idx)
                vids.append(vid)
                #imageio.imwrite(os.path.join(sequence_output_dir, filename), seg_mask)
                #np.save(os.path.join(output_dir, filename + '_depth.npy'), depth)

                #np.save(os.path.join(sequence_output_dir, filename + '_kpts.npy'), arr)
                #np.save(os.path.join(output_dir, filename + '_kpts_z.npy'), kpts_z)

                img_idx += 1
                if img_idx > num_images - 1:
                    break
    assert len(frame_names) == len(extracted_kpts) == len(fid) == len(vids)
    return frame_names, masked_frames, whitened_frames, np.array(
        extracted_kpts), np.array(fid), np.array(vids)