X_train, Y_train, batch_size=config.BATCH_SIZE, ), #seed=config.augment_flow_seed), epochs=config.EPOCHS, verbose=1, steps_per_epoch=int(1.2 * len(Y_train) / config.BATCH_SIZE), #validation_data=datagen.flow(X_test, Y_test , batch_size=config.BATCH_SIZE), callbacks=callbacks_list, class_weight=config.CLASS_WEIGHT, workers=config.WORKERS, use_multiprocessing=config.USE_MULTIPROCESS, max_queue_size=config.MAX_QUEUE_SIZE) try: best_model_path, best_accu = find_best_model(ff) except: best_accu = nan trial_count += 1 seed_curr += 1 K.clear_session() #del model gc.collect() expt_label = 'Run' + str(rr) # Make soundstream of all folders #sample_stream = make_sound_stream(file_days) # If the selcetion table path does not exist create it # if not os.path.exists(seltab_detect_path):
############################################################ # (1) Training classifiers using FULL dataset # EFFECT OF RANDOM INITIALIZATION # create a fold in cross-validation folder to store testing/evalidation results result_path = os.path.join(config.TRAIN_RESULT_PATH, '__full_data') #for ff in run_folders: #for rr in range(config.NUM_RUNS): #for rr in range(5, config.NUM_RUNS): for rr in range(1): ff = result_path + '/Run' + str(rr) os.makedirs(ff, exist_ok=True) print(ff) best_model_path, best_accu = find_best_model(ff) expt_label = 'Run' + str(rr) # Make soundstream of all folders #sample_stream = make_sound_stream(file_days) # If the selcetion table path does not exist create it # if not os.path.exists(seltab_detect_path): # os.makedirs(seltab_detect_path, exist_ok=True) print('Detecting:') full_process_interface_dsp(expt_label, day_list, best_model_path, ff, day_file_map, config) K.clear_session() gc.collect() #cuda.select_device(0)