Пример #1
0
def test_max_feature_regression():
    # Test to make sure random state is set properly.
    X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1)

    X_train, X_test = X[:2000], X[2000:]
    y_train, y_test = y[:2000], y[2000:]

    gbrt = GradientBoostingClassifier(n_estimators=100,
                                      min_samples_split=5,
                                      max_depth=2,
                                      learning_rate=.1,
                                      max_features=2,
                                      random_state=1)
    gbrt.fit(X_train, y_train)
    deviance = gbrt.loss_(y_test, gbrt.decision_function(X_test))
    assert_true(deviance < 0.5, "GB failed with deviance %.4f" % deviance)
Пример #2
0
def test_probability_exponential():
    # Predict probabilities.
    clf = GradientBoostingClassifier(loss='exponential',
                                     n_estimators=100,
                                     random_state=1)

    assert_raises(ValueError, clf.predict_proba, T)

    clf.fit(X, y)
    assert_array_equal(clf.predict(T), true_result)

    # check if probabilities are in [0, 1].
    y_proba = clf.predict_proba(T)
    assert_true(np.all(y_proba >= 0.0))
    assert_true(np.all(y_proba <= 1.0))
    score = clf.decision_function(T).ravel()
    assert_array_almost_equal(y_proba[:, 1], 1.0 / (1.0 + np.exp(-2 * score)))

    # derive predictions from probabilities
    y_pred = clf.classes_.take(y_proba.argmax(axis=1), axis=0)
    assert_array_equal(y_pred, true_result)