Пример #1
0
def to_frame(tables, cfg, additional_columns=[]):
    cfg = yaml_to_class(cfg).from_yaml(str_or_buffer=cfg)
    tables = [t for t in tables if t is not None]
    columns = misc.column_list(tables, cfg.columns_used()) + additional_columns
    if len(tables) > 1:
        df = sim.merge_tables(target=tables[0].name,
                              tables=tables, columns=columns)
    else:
        df = tables[0].to_frame(columns)
    df = deal_with_nas(df)
    return df
Пример #2
0
def to_frame(tables, cfg, additional_columns=[]):
    cfg = yaml_to_class(cfg).from_yaml(str_or_buffer=cfg)
    tables = [t for t in tables if t is not None]
    columns = misc.column_list(tables, cfg.columns_used()) + additional_columns
    if len(tables) > 1:
        df = orca.merge_tables(target=tables[0].name,
                               tables=tables, columns=columns)
    else:
        df = tables[0].to_frame(columns)
    df = deal_with_nas(df)
    return df
Пример #3
0
def to_frame(tbl, join_tbls, cfg, additional_columns=[]):
    """
    Leverage all the built in functionality of the sim framework to join to
    the specified tables, only accessing the columns used in cfg (the model
    yaml configuration file), an any additionally passed columns (the sim
    framework is smart enough to figure out which table to grab the column
    off of)

    Parameters
    ----------
    tbl : DataFrameWrapper
        The table to join other tables to
    join_tbls : list of DataFrameWrappers or strs
        A list of tables to join to "tbl"
    cfg : str
        The filename of a yaml configuration file from which to parse the
        strings which are actually used by the model
    additional_columns : list of strs
        A list of additional columns to include

    Returns
    -------
    A single DataFrame with the index from tbl and the columns used by cfg
    and any additional columns specified
    """
    join_tbls = join_tbls if isinstance(join_tbls, list) else [join_tbls]
    tables = [tbl] + join_tbls
    cfg = yaml_to_class(cfg).from_yaml(str_or_buffer=cfg)
    tables = [t for t in tables if t is not None]
    columns = misc.column_list(tables, cfg.columns_used()) + additional_columns
    if len(tables) > 1:
        df = orca.merge_tables(target=tables[0].name,
                               tables=tables,
                               columns=columns)
    else:
        df = tables[0].to_frame(columns)
    check_nas(df)
    return df
Пример #4
0
def to_frame(tbl, join_tbls, cfg, additional_columns=[]):
    """
    Leverage all the built in functionality of the sim framework to join to
    the specified tables, only accessing the columns used in cfg (the model
    yaml configuration file), an any additionally passed columns (the sim
    framework is smart enough to figure out which table to grab the column
    off of)

    Parameters
    ----------
    tbl : DataFrameWrapper
        The table to join other tables to
    join_tbls : list of DataFrameWrappers or strs
        A list of tables to join to "tbl"
    cfg : str
        The filename of a yaml configuration file from which to parse the
        strings which are actually used by the model
    additional_columns : list of strs
        A list of additional columns to include

    Returns
    -------
    A single DataFrame with the index from tbl and the columns used by cfg
    and any additional columns specified
    """
    join_tbls = join_tbls if isinstance(join_tbls, list) else [join_tbls]
    tables = [tbl] + join_tbls
    cfg = yaml_to_class(cfg).from_yaml(str_or_buffer=cfg)
    tables = [t for t in tables if t is not None]
    columns = misc.column_list(tables, cfg.columns_used()) + additional_columns
    if len(tables) > 1:
        df = orca.merge_tables(target=tables[0].name,
                               tables=tables, columns=columns)
    else:
        df = tables[0].to_frame(columns)
    check_nas(df)
    return df