Пример #1
0
    def waterfall_next(self, waterfall_last, action):
        waterfall_n = waterfall_last.copy()
        sub_pow_ls = []
        jamm_ls = copy.copy(self.jamm_pos)

        self.set_user_freq(action)
        w_f = usrp_spetrum_sense.main(self.tb, 1)
        #waterfall_lib_mean = np.mean(self.waterfall_lib[action], 0).reshape(1, 1, 1601, 1)
        #sub_waterfall =  w_f - waterfall_lib_mean
        jamm_ls.append(
            int(self.jammer_obj.get_center_freq() - 100500000) / 500000)
        """
        for i in range(self.n_actions):
            pow_ = np.sum(sub_waterfall[0,0,(i + 1) * 80 - 2:(i + 1) * 80 + 3, 0])
            sub_pow_ls.append(pow_)
            if pow_ > 40:
                jamm_ls.append(i)
        """
        for i in range(self.line_num):
            if i < self.line_num - 1:
                waterfall_n[0, i] = waterfall_n[0, i + 1]
            else:
                waterfall_n[0, i] = w_f
        #print(sub_pow_ls)
        return waterfall_n, jamm_ls
 def waterfall_lib(self):
     self.main_thread()
     waterfall_lib = np.zeros(shape=(self.n_actions, 50, 1601, 1),
                              dtype=float)
     for i in range(self.n_actions):
         self.set_user_freq(self.action_space[i])
         waterfall = usrp_spetrum_sense.main(self.tb)
         waterfall_lib[i] = waterfall
     self.user_obj.stop()
     return waterfall_lib
Пример #3
0
 def waterfall_lib(self):
     waterfall_lib = np.zeros(shape=(self.n_actions, 50, 1601, 1),
                              dtype=float)
     for i in range(self.n_actions):
         self.set_user_freq(self.action_space[i])
         waterfall = usrp_spetrum_sense.main(self.tb, 50)
         waterfall_lib[i] = waterfall
     t = threading.Thread(target=self.main_jammer_tx)
     t.start()
     return waterfall_lib
Пример #4
0
 def waterfall_next(self, waterfall_last, action):
     waterfall_n = waterfall_last.copy()
     self.set_user_freq(self.action_space[action])
     w_f = usrp_spetrum_sense.main(self.tb)
     for i in range(self.line_num):
         if i < self.line_num - 1:
             waterfall_n[0, i, :, 0] = waterfall_n[0, i + 1, :, 0]
         else:
             waterfall_n[0, i, :, 0] = w_f[0, 0, :, 0]
     return waterfall_n
 def spect_sense(self):
     root = tk.Tk()
     root.title("matplotlib in TK")
     f = Figure(figsize=(7, 7), dpi=200)
     canvas = FigureCanvasTkAgg(f, master=root)
     canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=1)
     x = 0
     while True:
         x = x + 1 if x < 18 else 0
         self.set_user_freq(self.action_space[x])
         w_f = usrp_spetrum_sense.main(self.tb)
         f.clf()
         waterfall_figure = f.add_subplot(111)
         waterfall_figure.plot(w_f[0, -1])
         canvas.draw()
Пример #6
0
 def __init__(self):
     super(freq_env, self).__init__()
     self.action_space = [
         i for i in np.arange(100000000.0, 110000001.0, 1000000)
     ]
     self.n_actions = len(self.action_space)
     self.n_features = 1601
     self.jammer_obj = jammer()
     self.user_obj = user()
     self.action_ls = [100000000.0]
     self.start_freq = 129000000.0
     self.end_freq = 130000000.0
     self.tb = usrp_spetrum_sense.my_top_block()
     self.tb.start()
     self.wf, self.min_index, self.user_f, self.sum_ls = usrp_spetrum_sense.main(
         self.tb)
Пример #7
0
 def spect_sense(self):
     while True:
         self.set_user_freq(self.user_f)
         w_f, min_i, userfreq, sumls = usrp_spetrum_sense.main(self.tb)
         x = 3
         if self.min_index == 0 or self.min_index == 1 or self.min_index == 2 or self.min_index == 3 or self.min_index == 4:
             if sumls[self.
                      min_index] > x * self.sum_ls[self.min_index] or sumls[
                          self.min_index +
                          2] > x * self.sum_ls[self.min_index + 2] or sumls[
                              self.min_index +
                              4] > x * self.sum_ls[self.min_index + 4]:
                 self.user_f = userfreq
                 self.wf = w_f
                 self.min_index = min_i
                 self.sum_ls = sumls
                 self.set_user_freq(self.user_f)
         elif self.min_index == 39 or self.min_index == 38 or self.min_index == 37 or self.min_index == 36 or self.min_index == 35:
             if sumls[self.
                      min_index] > x * self.sum_ls[self.min_index] or sumls[
                          self.min_index -
                          2] > x * self.sum_ls[self.min_index - 2] or sumls[
                              self.min_index -
                              4] > x * self.sum_ls[self.min_index - 4]:
                 self.user_f = userfreq
                 self.wf = w_f
                 self.min_index = min_i
                 self.sum_ls = sumls
                 self.set_user_freq(self.user_f)
         else:
             if sumls[self.
                      min_index] > x * self.sum_ls[self.min_index] or sumls[
                          self.min_index -
                          2] > x * self.sum_ls[self.min_index - 2] or sumls[
                              self.min_index - 4] > x * self.sum_ls[
                                  self.min_index - 4] or sumls[
                                      self.min_index + 2] > x * self.sum_ls[
                                          self.min_index + 2] or sumls[
                                              self.min_index +
                                              4] > x * self.sum_ls[
                                                  self.min_index + 4]:
                 self.user_f = userfreq
                 self.wf = w_f
                 self.min_index = min_i
                 self.sum_ls = sumls
                 self.set_user_freq(self.user_f)
         time.sleep(2)
    def waterfall_background(self):
        self.jamm_pos = []
        self.freq_pow = []
        waterfall_bg = usrp_spetrum_sense.main(self.tb)

        for i in range(self.n_actions):
            sum_freq_1 = np.sum(waterfall_bg[0, -1,
                                             (2 * i + 1) * 40:(2 * i + 3) * 40,
                                             0])
            self.freq_pow.append(sum_freq_1)
            #sum_freq_2 = np.sum(waterfall_bg[0, 0, (2 * i + 1) * 40:(2 * i + 3) * 40, 0])
            #sum_freq_3 = np.sum(waterfall_bg[0, 24, (2 * i + 1) * 40:(2 * i + 3) * 40, 0])
            if sum_freq_1 > 450:
                self.jamm_pos.append(i)
        print(self.freq_pow)
        print(self.jamm_pos)
        return waterfall_bg
Пример #9
0
 def step(self, action):
     # ---------------------------------define reward------------------------------
     jammer_freq = self.get_jammer_freq()
     print("jammer_freq---------------------", jammer_freq)
     if self.action_space[action] - jammer_freq > 100000.0:
         if self.action_ls[-1] == self.action_space[action]:
             reward = 1
             done = True
         else:
             reward = 0.8
             done = True
     else:
         reward = -1
         done = False
     self.action_ls.append(self.action_space[action])
     #---------------------------------define s_ ----------------------------------
     self.set_user_freq(self.action_space[action])
     s_ = usrp_spetrum_sense.main()
     return s_, reward, done
Пример #10
0
    def waterfall_background(self):
        self.jamm_pos = []
        self.freq_pow = []
        waterfall_bg = usrp_spetrum_sense.main(self.tb, 100)
        self.waterfall_bg_mean = np.mean(waterfall_bg[0],
                                         0).reshape(1, 1, 1601, 1)

        for i in range(self.n_actions):
            sum_freq_1 = np.sum(
                self.waterfall_bg_mean[0, 0,
                                       (i + 1) * 80 - 40:(i + 1) * 80 + 41, 0])
            self.freq_pow.append(sum_freq_1)
            # sum_freq_2 = np.sum(waterfall_bg[0, 0, (2 * i + 1) * 40:(2 * i + 3) * 40, 0])
            # sum_freq_3 = np.sum(waterfall_bg[0, 24, (2 * i + 1) * 40:(2 * i + 3) * 40, 0])
            if sum_freq_1 > 280:
                self.jamm_pos.append(i)
        #print(self.freq_pow)
        #print(self.jamm_pos)
        return waterfall_bg
Пример #11
0
    def waterfall_reset(self):
        self.current_line = -50
        self.jamm_pos = []
        self.freq_pow = []
        rand_int = random.randint(0, self.n_actions - 1)
        self.action_last = rand_int
        waterfall_reset = np.zeros(shape=(1, 50, 1601, 1), dtype=float)
        self.line_num = list(waterfall_reset.shape)[1]

        self.set_user_freq(self.action_space[rand_int])
        w_f_reset = usrp_spetrum_sense.main(self.tb)

        for i in range(self.line_num):
            self.current_line += 1
            waterfall_reset[0, i, :,
                            0] = self.power_ls[(self.index_end[0] + 1) *
                                               i:(self.index_end[0] + 1) * i +
                                               self.index_end[0] + 1]
        for i in range(self.n_actions):
            sum_freq = np.sum(waterfall_reset[0, -1, (2 * i + 1) *
                                              40:(2 * i + 3) * 40, 0])
            self.freq_pow.append(sum_freq)
            if sum_freq > 400:
                self.jamm_pos.append(i)
        #print(self.freq_pow)
        #print(self.jamm_pos)
        #plt.subplot(211)
        #for i in range(19):
        #plt.axvline((i+1)*80,color='red')
        #plt.plot(waterfall_reset[0,-1])
        waterfall_reset[0, -1, :, 0] = w_f_reset[0, 0, :, 0]
        #plt.subplot(212)
        #plt.plot(w_f[0, -1])
        #plt.show()
        return waterfall_reset
        pass
Пример #12
0
 def reset(self):
     self.action_ls = [100000000.0]
     self.set_user_freq(100000000.0)
     self.s, self.userfreq = usrp_spetrum_sense.main()
     return self.s