Пример #1
0
 def test_replace_values_jagged_integer_array(self):
     name = 'cg_eng_alarm_at'
     param = Parameter.query.filter(Parameter.name == name).first()
     data_slice = np.array([
         '\x91\x04', '\xc0', '\x91\x04', '\x92\x04\x04', '\x91\x04', '\xc0',
         '\xc0', '\xc0', '\xc0', '\xc0'
     ])
     value_encoding = 'int16'
     fill_value = _get_fill_value(param)
     is_array = True
     rval = _replace_values(data_slice, value_encoding, fill_value,
                            is_array, name)
     self.assertEqual(rval.dtype.kind, 'i')
     np.testing.assert_equal(
         rval,
         np.array([
             [4, fill_value],
             [fill_value, fill_value],
             [4, fill_value],
             [4, 4],
             [4, fill_value],
             [fill_value, fill_value],
             [fill_value, fill_value],
             [fill_value, fill_value],
             [fill_value, fill_value],
             [fill_value, fill_value],
         ]))
Пример #2
0
    def _insert_data(dataset, param, data, provenance_metadata=None, request_id=None):
        """
        Insert the specified parameter into this dataset. If data is None, use the fill value
        :param dataset:
        :param param:
        :param data:
        :return:
        """
        dims = ['obs']

        # IF dimensions are defined in preload, use those
        # otherwise, create dimensions dynamically based on the
        # shape of the data
        if param.dimensions:
            dims += [d.value for d in param.dimensions]
        else:
            if data is not None:
                for index, _ in enumerate(data.shape[1:]):
                    name = '%s_dim_%d' % (param.name, index)
                    dims.append(name)

        # IF data is missing and specified dimensions aren't already defined
        # we cannot determine the correct shape, limit dimensions to obs
        missing = [d for d in dims if d not in dataset.dims]
        if missing and data is None:
            log.error('Unable to resolve all dimensions for derived parameter: %r. Filling as scalar', missing)
            dims = ['obs']

        fill_value = _get_fill_value(param)

        # Data is None, replace with fill values
        if data is None:
            shape = tuple([len(dataset[d]) for d in dims])
            data = np.zeros(shape)
            data[:] = fill_value

        try:
            attrs = param.attrs

            # Override the fill value supplied by preload if necessary
            attrs['_FillValue'] = fill_value

            coord_columns = 'time lat lon'
            if param.name not in coord_columns:
                attrs['coordinates'] = coord_columns
            dataset[param.name] = (dims, data, attrs)

        except ValueError as e:
            message = 'Unable to insert parameter: %r. Data shape (%r) does not match expected shape (%r)' % \
                      (param, data.shape, e)
            to_attach = {'type': 'FunctionError', "parameter": str(param),
                         'function': str(param.parameter_function), 'message': message}
            if provenance_metadata:
                provenance_metadata.calculated_metadata.errors.append(to_attach)
            log.error('<%s> %s', request_id, message)
            raise
Пример #3
0
 def test_replace_values_jagged_integer_array(self):
     name = 'cg_eng_alarm_at'
     param = Parameter.query.filter(Parameter.name == name).first()
     data_slice = np.array(['\x91\x04', '\xc0', '\x91\x04', '\x92\x04\x04', '\x91\x04',
                            '\xc0', '\xc0', '\xc0', '\xc0', '\xc0'])
     value_encoding = 'int16'
     fill_value = _get_fill_value(param)
     is_array = True
     rval = _replace_values(data_slice, value_encoding, fill_value, is_array, name)
     self.assertEqual(rval.dtype.kind, 'i')
     np.testing.assert_equal(rval, np.array([[4, fill_value],
                                             [fill_value, fill_value],
                                             [4, fill_value],
                                             [4, 4],
                                             [4, fill_value],
                                             [fill_value, fill_value],
                                             [fill_value, fill_value],
                                             [fill_value, fill_value],
                                             [fill_value, fill_value],
                                             [fill_value, fill_value],
                                             ]))
Пример #4
0
    def _insert_data(dataset, param, data, provenance_metadata=None, request_id=None):
        """
        Insert the specified parameter into this dataset. If data is None, use the fill value
        :param dataset:
        :param param:
        :param data:
        :return:
        """
        dims = ['obs']

        # the preload defined parameter dimensions
        param_dimensions = []
        if param.dimensions:
            param_dimensions = [d.value for d in param.dimensions]

        if '-obs' in param_dimensions:
            # remove obs dimension from parameter's dimensions and data (13025 AC2)
            param_dimensions.remove('-obs')
            dims = param_dimensions

            if data is not None:
                # remove the obs dimension if it is present - in such a case, the data dimensions will be greater than 
                # the number of items in param_dimensions
                data = data[0] if data.ndim > len(param_dimensions) else data
        elif param_dimensions:
            # append parameter dimensions onto obs
            dims += param_dimensions
        else:
            # create dimensions dynamically based on the
            # shape of the data
            if data is not None:
                for index, _ in enumerate(data.shape[1:]):
                    name = '%s_dim_%d' % (param.name, index)
                    dims.append(name)

        # IF data is missing and specified dimensions aren't already defined
        # we cannot determine the correct shape, limit dimensions to obs
        missing = [d for d in dims if d not in dataset.dims]
        if missing and data is None:
            log.error('Unable to resolve all dimensions for derived parameter: %r. Filling as scalar', missing)
            dims = ['obs']

        fill_value = _get_fill_value(param)

        # Data is None, replace with fill values
        if data is None:
            shape = tuple([len(dataset[d]) for d in dims])
            data = np.zeros(shape)
            data[:] = fill_value

        try:
            attrs = param.attrs

            # Override the fill value supplied by preload if necessary
            attrs['_FillValue'] = fill_value

            coord_columns = 'time lat lon'
            if param.name not in coord_columns:
                attrs['coordinates'] = coord_columns
            dataset[param.name] = (dims, data, attrs)

        except ValueError as e:
            message = 'Unable to insert parameter: %r. Data shape (%r) does not match expected shape (%r)' % \
                      (param, data.shape, e)
            to_attach = {'type': 'FunctionError', "parameter": str(param),
                         'function': str(param.parameter_function), 'message': message}
            if provenance_metadata:
                provenance_metadata.calculated_metadata.errors.append(to_attach)
            log.error('<%s> %s', request_id, message)
            raise
Пример #5
0
 def test_get_fill_value(self):
     for param in Parameter.query:
         fill = _get_fill_value(param)
         self.assertIsNotNone(fill)
         if isinstance(fill, basestring):
             self.assertEqual(fill, '')
Пример #6
0
 def test_get_fill_value(self):
     for param in Parameter.query:
         fill = _get_fill_value(param)
         self.assertIsNotNone(fill)
         if isinstance(fill, basestring):
             self.assertEqual(fill, '')