class AlphaSignalPlotter(RawSignalPlotter):
    def __init__(self, person, eegData, signals, filePath, save=True, plot=True, logScale=False):
        RawSignalPlotter.__init__(self, person, eegData, signals, filePath, save, plot, logScale, name="alpha")
        self.eegUtil = EEGUtil()

    def _getData(self, signal):
        column = self.eegData.getColumn(signal)
        samplingRate = self.eegData.getSamplingRate()
        return self.eegUtil.getAlphaWaves(column, samplingRate)
Пример #2
0
class EEGProcessor(object):
    def __init__(self, verbose=False):
        self.samplingRate = ConfigProvider().getEmotivConfig().get("samplingRate")
        self.qualUtil = QualityUtil()
        self.eegUtil = EEGUtil()
        self.verbose = verbose

    def process(self, proc):
        alpha = self.eegUtil.getAlphaWaves(proc, self.samplingRate)
        invalid = self.qualUtil.isInvalidData(alpha)
        return alpha, invalid
Пример #3
0
class FeatureExtractor(object):
    '''
    Controls the processing chain and fetches the values needed for the classificator
    '''

    def __init__(self, dataCollector):

        self.inputQueue = Queue()
        self.outputQueue = Queue()
        self.extractQueue = Queue()
        
        self.sigUtil = SignalUtil()
        self.eegUtil = EEGUtil()
        
        self.collector = dataCollector
        self.collectorThread = threading.Thread(target=self.collector.collectData)
        
        self.processor = DataProcessor(self.inputQueue, self.outputQueue)
        self.processingThread = threading.Thread(target=self.processor.processData)

        self.extract = True

    def start(self):
        '''setting data handler and starts collecting'''
        print("%s: starting feature extractor" % self.__class__.__name__)   
        self.collector.setHandler(self.handleDataSet)  
        self.collectorThread.start()
        self.processingThread.start()
        
        while self.extract:
            try:
                procData = self.outputQueue.get(timeout=1)
                self.extractFeatures(procData)
            except Empty:
                pass
    
    def extractFeatures(self, data):
        features = []
        for _, sigData in data.iteritems():
            theta = self.eegUtil.getThetaChannel(sigData["fft"])
            features.extend(theta)
        self.extractQueue.put(array(features))
    
    def handleDataSet(self, data):
        '''Add the given data to the processingQueue'''
        self.inputQueue.put(data)
    
    def close(self):
        self.processor.close()
        self.processingThread.join()
        self.collector.close()
        self.collectorThread.join()
        print("%s: closing feature extractor" % self.__class__.__name__)     
class DeltaSignalPlotter(RawSignalPlotter):
    def __init__(self, person, eegData, signals, filePath, save=True, plot=True, logScale=False):
        RawSignalPlotter.__init__(self, person, eegData, signals, filePath, save, plot, logScale, name="delta")
        self.chain = SignalProcessor()
        self.eegUtil = EEGUtil()

    def _getData(self, signal):
        raw = self.eegData.getColumn(signal)
        qual = self.eegData.getQuality(signal)
        samplingRate = self.eegData.getSamplingRate()

        proc, _ = self.chain.process(raw, qual)
        proc = QualityUtil().replaceNans(proc)
        return self.eegUtil.getDeltaWaves(proc, samplingRate)
Пример #5
0
    def __init__(self, dataCollector):

        self.inputQueue = Queue()
        self.outputQueue = Queue()
        self.extractQueue = Queue()
        
        self.sigUtil = SignalUtil()
        self.eegUtil = EEGUtil()
        
        self.collector = dataCollector
        self.collectorThread = threading.Thread(target=self.collector.collectData)
        
        self.processor = DataProcessor(self.inputQueue, self.outputQueue)
        self.processingThread = threading.Thread(target=self.processor.processData)

        self.extract = True
Пример #6
0
 def plotEEGChannel(self, fft, channel, freqRange, axChan):
     eeg_util = EEGUtil()
     channels = eeg_util.getChannels(fft)
     axChan.doPlot(range(*freqRange), channels[channel], color='k')
     axChan.set_xlabel('Frequency (Hz)')
     axChan.set_ylabel(channel)
Пример #7
0
 def __init__(self, verbose=False):
     self.samplingRate = ConfigProvider().getEmotivConfig().get("samplingRate")
     self.qualUtil = QualityUtil()
     self.eegUtil = EEGUtil()
     self.verbose = verbose
 def __init__(self, person, eegData, signals, filePath, save=True, plot=True, logScale=False):
     RawSignalPlotter.__init__(self, person, eegData, signals, filePath, save, plot, logScale, name="alpha")
     self.eegUtil = EEGUtil()
Пример #9
0
 def setUp(self):
     self.util = EEGUtil()
Пример #10
0
class TestEEGUtil(unittest.TestCase):

    def setUp(self):
        self.util = EEGUtil()

    def test__getSliceParams(self):
        for _, freqRange in self.util.channel_ranges.iteritems():
            self.assertEqual(type(self.util._getSliceParam(freqRange)[0]), int)

    def test_getChannels_short(self):
        data = [1, 2, 3, 4, 5, 6, 7, 8]

        channels = self.util.getChannels(data)
        self.assertTrue(len(channels) == 5)
        self.assertTrue(len(channels["delta"]) > 0)
        self.assertTrue(len(channels["theta"]) > 0)
        
        self.assertTrue(len(channels["alpha"]) == 0)

    def test_getChannels(self):
        fft = TEST_DATA_12000Hz

        channels = self.util.getChannels(fft)
        flattenChannels = np.hstack(channels.values())
        self.assertTrue(all([x in fft for x in flattenChannels]))
        
        self.assertTrue(len(flattenChannels) <= len(fft))

    def test_getSingleChannels(self):
        fft = TEST_DATA_12000Hz
        channels = self.util.getChannels(fft)

        delta = self.util.getDeltaChannel(fft)
        # TODO delta range from 0.5 to 4Hz, actual range from 1 - 4Hz
        self.assertEqual(len(delta), 3)
        self.assertTrue(all([x in channels["delta"] for x in delta]))
               
        theta = self.util.getThetaChannel(fft)
        self.assertEqual(len(theta), 4)
        self.assertTrue(all([x in channels["theta"] for x in theta]))
                
        alpha = self.util.getAlphaChannel(fft)
        self.assertEqual(len(alpha), 5)
        self.assertTrue(all([x in channels["alpha"] for x in alpha]))
                
        beta = self.util.getBetaChannel(fft)
        self.assertEqual(len(beta), 17)
        self.assertTrue(all([x in channels["beta"] for x in beta]))
          
        gamma = self.util.getGammaChannel(fft)
        self.assertEqual(len(gamma), len(range(*self.util.channel_ranges["gamma"])))
        self.assertTrue(all([x in channels["gamma"] for x in gamma]))

    def test_getWaves(self):
        eegData = EEGTableFileUtil().readFile(PATH + "example_32.csv")
        eeg = eegData.getColumn("F3")
        nEeg = len(eeg)
        waves = self.util.getWaves(eeg, eegData.getSamplingRate())
        
        self.assertEqual(len(waves), 5)
        for _, wave in waves.iteritems():
            self.assertEqual(len(wave), nEeg)

    def test_getSingleWaves(self):
        eegData = EEGTableFileUtil().readFile(PATH + "example_32.csv")
        eeg = eegData.getColumn("F3")
        nEeg = len(eeg)
        samplingRate = eegData.getSamplingRate()
        waves = self.util.getWaves(eeg, samplingRate)

        delta = self.util.getDeltaWaves(eeg, samplingRate)
        self.assertEqual(len(delta), nEeg)
        self.assertTrue(all([x in waves["delta"] for x in delta]))

        theta = self.util.getThetaWaves(eeg, samplingRate)
        self.assertEqual(len(theta), nEeg)
        self.assertTrue(all([x in waves["theta"] for x in theta]))

        alpha = self.util.getAlphaWaves(eeg, samplingRate)
        self.assertEqual(len(alpha), nEeg)
        self.assertTrue(all([x in waves["alpha"] for x in alpha]))

        beta = self.util.getBetaWaves(eeg, samplingRate)
        self.assertEqual(len(beta), nEeg)
        self.assertTrue(all([x in waves["alpha"] for x in alpha]))
          
        gamma = self.util.getGammaWaves(eeg, samplingRate)
        self.assertEqual(len(gamma), nEeg)
        self.assertTrue(all([x in waves["gamma"] for x in gamma]))
 def __init__(self, person, eegData, signals, filePath, save=True, plot=True, logScale=False):
     RawSignalPlotter.__init__(self, person, eegData, signals, filePath, save, plot, logScale, name="delta")
     self.chain = SignalProcessor()
     self.eegUtil = EEGUtil()