Пример #1
0
def solve():
  for comp in count(3, 2):
    if is_prime(comp):
      continue
    holds = False
    for s in xrange(1, int(math.sqrt(comp / 2 + 1) + 1)):
      diff = comp - 2 * s * s
      if is_prime(diff):
        holds = True
        break
    if not holds:
      return comp
def solve3():
    ps = primes(1, UPPER_PRIME)
    for l in xrange(len(ps), 1, -1):
        for i in xrange(len(ps) - l + 1):
            p = sum(ps[i:i + l])
            #print '%s -> %s' % (ps[i:i+l], p)
            if p < 1000000 and is_prime(p):
                return p
Пример #3
0
def solve3():
  ps = primes(1, UPPER_PRIME)
  for l in xrange(len(ps), 1, -1):
    for i in xrange(len(ps) - l + 1):
      p = sum(ps[i:i+l])
      #print '%s -> %s' % (ps[i:i+l], p)
      if p < 1000000 and is_prime(p):
        return p
def solve():
    ps = primes(1, UPPER_PRIME)
    for l in xrange(len(ps), 1, -1):
        s = sum(ps[-l:])
        for i in xrange(len(ps) - l, -1, -1):
            #print s
            if s < 1000000 and is_prime(s):
                return s
            s = s + ps[i - 1] - ps[i + l - 1]
Пример #5
0
def solve():
  ps = primes(1, UPPER_PRIME)
  for l in xrange(len(ps), 1, -1):
    s = sum(ps[-l:])
    for i in xrange(len(ps) - l, -1, -1):
      #print s
      if s < 1000000 and is_prime(s):
        return s
      s = s + ps[i - 1] - ps[i + l - 1]
Пример #6
0
def solve():
    for d in range(7, 0, -1):  # optimization: skip 9- and 8-digit numbers
        for candidate in permutations(reversed(range(1, d + 1))):
            p = reduce(lambda t, x: 10 * t + x, candidate)
            if is_prime(p):
                return p
Пример #7
0
def solve():
  for d in range(7, 0, -1):  # optimization: skip 9- and 8-digit numbers
    for candidate in permutations(reversed(range(1, d + 1))):
      p = reduce(lambda t, x: 10 * t + x, candidate)
      if is_prime(p):
        return p