Пример #1
0
def one_sample(sample):
    mp3_filename = sample[0]
    # Storing wav files next to the mp3 ones - just with a different suffix
    wav_filename = path.splitext(mp3_filename)[0] + ".wav"
    _maybe_convert_wav(mp3_filename, wav_filename)
    frames = int(
        subprocess.check_output(['soxi', '-s', wav_filename],
                                stderr=subprocess.STDOUT))
    file_size = -1
    if path.exists(wav_filename):
        file_size = path.getsize(wav_filename)
        frames = int(
            subprocess.check_output(['soxi', '-s', wav_filename],
                                    stderr=subprocess.STDOUT))
    label = validate_label(sample[1])
    rows = []
    counter = get_counter()
    if file_size == -1:
        # Excluding samples that failed upon conversion
        counter['failed'] += 1
    elif label is None:
        # Excluding samples that failed on label validation
        counter['invalid_label'] += 1
    elif int(frames / SAMPLE_RATE * 1000 / 10 / 2) < len(str(label)):
        # Excluding samples that are too short to fit the transcript
        counter['too_short'] += 1
    elif frames / SAMPLE_RATE > MAX_SECS:
        # Excluding very long samples to keep a reasonable batch-size
        counter['too_long'] += 1
    else:
        # This one is good - keep it for the target CSV
        rows.append((wav_filename, file_size, label))
    counter['all'] += 1
    counter['total_time'] += frames
    return (counter, rows)
Пример #2
0
def one_sample(sample):
    """ Take a audio file, and optionally convert it to 16kHz WAV """
    wav_filename = sample[0]
    file_size = -1
    frames = 0
    if path.exists(wav_filename):
        file_size = path.getsize(wav_filename)
        frames = int(subprocess.check_output(['soxi', '-s', wav_filename], stderr=subprocess.STDOUT))
    label = label_filter(sample[1])
    counter = get_counter()
    rows = []

    if file_size == -1:
        # Excluding samples that failed upon conversion
        print("conversion failure", wav_filename)
        counter['failed'] += 1
    elif label is None:
        # Excluding samples that failed on label validation
        counter['invalid_label'] += 1
    elif int(frames/SAMPLE_RATE*1000/15/2) < len(str(label)):
        # Excluding samples that are too short to fit the transcript
        counter['too_short'] += 1
    elif frames/SAMPLE_RATE > MAX_SECS:
        # Excluding very long samples to keep a reasonable batch-size
        counter['too_long'] += 1
    else:
        # This one is good - keep it for the target CSV
        rows.append((wav_filename, file_size, label))
    counter['all'] += 1
    counter['total_time'] += frames
    return (counter, rows)
Пример #3
0
def _maybe_convert_set(input_tsv, audio_dir, space_after_every_character=None):
    output_csv = path.join(audio_dir,
                           os.path.split(input_tsv)[-1].replace('tsv', 'csv'))
    print("Saving new DeepSpeech-formatted CSV file to: ", output_csv)

    # Get audiofile path and transcript for each sentence in tsv
    samples = []
    with open(input_tsv, encoding='utf-8') as input_tsv_file:
        reader = csv.DictReader(input_tsv_file, delimiter='\t')
        for row in reader:
            samples.append((path.join(audio_dir,
                                      row['path']), row['sentence']))

    counter = get_counter()
    num_samples = len(samples)
    rows = []

    print("Importing mp3 files...")
    pool = Pool()
    bar = progressbar.ProgressBar(max_value=num_samples, widgets=SIMPLE_BAR)
    for i, processed in enumerate(pool.imap_unordered(one_sample, samples),
                                  start=1):
        counter += processed[0]
        rows += processed[1]
        bar.update(i)
    bar.update(num_samples)
    pool.close()
    pool.join()

    with open(output_csv, 'w', encoding='utf-8') as output_csv_file:
        print('Writing CSV file for DeepSpeech.py as: ', output_csv)
        writer = csv.DictWriter(output_csv_file, fieldnames=FIELDNAMES)
        writer.writeheader()
        bar = progressbar.ProgressBar(max_value=len(rows), widgets=SIMPLE_BAR)
        for filename, file_size, transcript in bar(rows):
            if space_after_every_character:
                writer.writerow({
                    'wav_filename': filename,
                    'wav_filesize': file_size,
                    'transcript': ' '.join(transcript)
                })
            else:
                writer.writerow({
                    'wav_filename': filename,
                    'wav_filesize': file_size,
                    'transcript': transcript
                })

    imported_samples = get_imported_samples(counter)
    assert counter['all'] == num_samples
    assert len(rows) == imported_samples

    print_import_report(counter, SAMPLE_RATE, MAX_SECS)
Пример #4
0
def _maybe_convert_set(extracted_dir, source_csv, target_csv):
    print()
    if path.exists(target_csv):
        print('Found CSV file "%s" - not importing "%s".' %
              (target_csv, source_csv))
        return
    print('No CSV file "%s" - importing "%s"...' % (target_csv, source_csv))
    samples = []
    with open(source_csv) as source_csv_file:
        reader = csv.DictReader(source_csv_file)
        for row in reader:
            samples.append((os.path.join(extracted_dir,
                                         row['filename']), row['text']))

    # Mutable counters for the concurrent embedded routine
    counter = get_counter()
    num_samples = len(samples)
    rows = []

    print('Importing mp3 files...')
    pool = Pool()
    bar = progressbar.ProgressBar(max_value=num_samples, widgets=SIMPLE_BAR)
    for i, processed in enumerate(pool.imap_unordered(one_sample, samples),
                                  start=1):
        counter += processed[0]
        rows += processed[1]
        bar.update(i)
    bar.update(num_samples)
    pool.close()
    pool.join()

    print('Writing "%s"...' % target_csv)
    with open(target_csv, 'w') as target_csv_file:
        writer = csv.DictWriter(target_csv_file, fieldnames=FIELDNAMES)
        writer.writeheader()
        bar = progressbar.ProgressBar(max_value=len(rows), widgets=SIMPLE_BAR)
        for filename, file_size, transcript in bar(rows):
            writer.writerow({
                'wav_filename': filename,
                'wav_filesize': file_size,
                'transcript': transcript
            })

    imported_samples = get_imported_samples(counter)
    assert counter['all'] == num_samples
    assert len(rows) == imported_samples

    print_import_report(counter, SAMPLE_RATE, MAX_SECS)
Пример #5
0
def one_sample(sample):
    """ Take a audio file, and optionally convert it to 16kHz WAV """
    orig_filename = sample['path']
    # Storing wav files next to the wav ones - just with a different suffix
    wav_filename = path.splitext(orig_filename)[0] + ".converted.wav"
    _maybe_convert_wav(orig_filename, wav_filename)
    file_size = -1
    frames = 0
    if path.exists(wav_filename):
        file_size = path.getsize(wav_filename)
        frames = int(
            subprocess.check_output(['soxi', '-s', wav_filename],
                                    stderr=subprocess.STDOUT))
    label = sample['text']

    rows = []

    # Keep track of how many samples are good vs. problematic
    counter = get_counter()
    if file_size == -1:
        # Excluding samples that failed upon conversion
        counter['failed'] += 1
    elif label is None:
        # Excluding samples that failed on label validation
        counter['invalid_label'] += 1
    elif int(frames / SAMPLE_RATE * 1000 / 10 / 2) < len(str(label)):
        # Excluding samples that are too short to fit the transcript
        counter['too_short'] += 1
    elif frames / SAMPLE_RATE > MAX_SECS:
        # Excluding very long samples to keep a reasonable batch-size
        counter['too_long'] += 1
    else:
        # This one is good - keep it for the target CSV
        rows.append((wav_filename, file_size, label))
    counter['all'] += 1
    counter['total_time'] += frames

    return (counter, rows)
Пример #6
0
def _maybe_convert_sets(target_dir, extracted_data, english_compatible=False):
    extracted_dir = path.join(target_dir, extracted_data)
    # override existing CSV with normalized one
    target_csv_template = os.path.join(target_dir,
                                       'ts_' + ARCHIVE_NAME + '_{}.csv')
    if os.path.isfile(target_csv_template):
        return
    path_to_original_csv = os.path.join(extracted_dir, 'data.csv')
    with open(path_to_original_csv) as csv_f:
        data = [
            d for d in csv.DictReader(csv_f, delimiter=',')
            if float(d['duration']) <= MAX_SECS
        ]

    for line in data:
        line['path'] = os.path.join(extracted_dir, line['path'])

    num_samples = len(data)
    rows = []
    counter = get_counter()

    print("Importing {} wav files...".format(num_samples))
    pool = Pool()
    bar = progressbar.ProgressBar(max_value=num_samples, widgets=SIMPLE_BAR)
    for i, processed in enumerate(pool.imap_unordered(one_sample, data),
                                  start=1):
        counter += processed[0]
        rows += processed[1]
        bar.update(i)
    bar.update(num_samples)
    pool.close()
    pool.join()

    with open(target_csv_template.format('train'),
              'w') as train_csv_file:  # 80%
        with open(target_csv_template.format('dev'),
                  'w') as dev_csv_file:  # 10%
            with open(target_csv_template.format('test'),
                      'w') as test_csv_file:  # 10%
                train_writer = csv.DictWriter(train_csv_file,
                                              fieldnames=FIELDNAMES)
                train_writer.writeheader()
                dev_writer = csv.DictWriter(dev_csv_file,
                                            fieldnames=FIELDNAMES)
                dev_writer.writeheader()
                test_writer = csv.DictWriter(test_csv_file,
                                             fieldnames=FIELDNAMES)
                test_writer.writeheader()

                for i, item in enumerate(rows):
                    transcript = validate_label(
                        cleanup_transcript(
                            item[2], english_compatible=english_compatible))
                    if not transcript:
                        continue
                    wav_filename = os.path.join(target_dir, extracted_data,
                                                item[0])
                    i_mod = i % 10
                    if i_mod == 0:
                        writer = test_writer
                    elif i_mod == 1:
                        writer = dev_writer
                    else:
                        writer = train_writer
                    writer.writerow(
                        dict(
                            wav_filename=wav_filename,
                            wav_filesize=os.path.getsize(wav_filename),
                            transcript=transcript,
                        ))

    imported_samples = get_imported_samples(counter)
    assert counter['all'] == num_samples
    assert len(rows) == imported_samples

    print_import_report(counter, SAMPLE_RATE, MAX_SECS)
def _maybe_convert_sets(target_dir, extracted_data):
    extracted_dir = path.join(target_dir, extracted_data)
    # override existing CSV with normalized one
    target_csv_template = os.path.join(
        target_dir,
        ARCHIVE_DIR_NAME + '_' + ARCHIVE_NAME.replace('.zip', '_{}.csv'))
    if os.path.isfile(target_csv_template):
        return

    ogg_root_dir = os.path.join(extracted_dir,
                                ARCHIVE_NAME.replace('.zip', ''))

    # Get audiofile path and transcript for each sentence in tsv
    samples = []
    glob_dir = os.path.join(ogg_root_dir, '**/*.ogg')
    for record in glob(glob_dir, recursive=True):
        record_file = record.replace(ogg_root_dir + os.path.sep, '')
        if record_filter(record_file):
            samples.append(
                (os.path.join(ogg_root_dir, record_file),
                 os.path.splitext(os.path.basename(record_file))[0]))

    counter = get_counter()
    num_samples = len(samples)
    rows = []

    print("Importing ogg files...")
    pool = Pool()
    bar = progressbar.ProgressBar(max_value=num_samples, widgets=SIMPLE_BAR)
    for i, processed in enumerate(pool.imap_unordered(one_sample, samples),
                                  start=1):
        counter += processed[0]
        rows += processed[1]
        bar.update(i)
    bar.update(num_samples)
    pool.close()
    pool.join()

    with open(target_csv_template.format('train'),
              'w') as train_csv_file:  # 80%
        with open(target_csv_template.format('dev'),
                  'w') as dev_csv_file:  # 10%
            with open(target_csv_template.format('test'),
                      'w') as test_csv_file:  # 10%
                train_writer = csv.DictWriter(train_csv_file,
                                              fieldnames=FIELDNAMES)
                train_writer.writeheader()
                dev_writer = csv.DictWriter(dev_csv_file,
                                            fieldnames=FIELDNAMES)
                dev_writer.writeheader()
                test_writer = csv.DictWriter(test_csv_file,
                                             fieldnames=FIELDNAMES)
                test_writer.writeheader()

                for i, item in enumerate(rows):
                    transcript = validate_label(item[2])
                    if not transcript:
                        continue
                    wav_filename = os.path.join(
                        ogg_root_dir, item[0].replace('.ogg', '.wav'))
                    i_mod = i % 10
                    if i_mod == 0:
                        writer = test_writer
                    elif i_mod == 1:
                        writer = dev_writer
                    else:
                        writer = train_writer
                    writer.writerow(
                        dict(
                            wav_filename=wav_filename,
                            wav_filesize=os.path.getsize(wav_filename),
                            transcript=transcript,
                        ))

    imported_samples = get_imported_samples(counter)
    assert counter['all'] == num_samples
    assert len(rows) == imported_samples

    print_import_report(counter, SAMPLE_RATE, MAX_SECS)
Пример #8
0
def _maybe_convert_sets(target_dir, extracted_data):
    extracted_dir = path.join(target_dir, extracted_data)
    # override existing CSV with normalized one
    target_csv_template = os.path.join(target_dir, ARCHIVE_DIR_NAME, ARCHIVE_NAME.replace('.tgz', '_{}.csv'))
    if os.path.isfile(target_csv_template):
        return

    wav_root_dir = os.path.join(extracted_dir)

    # Get audiofile path and transcript for each sentence in tsv
    samples = []
    glob_dir = os.path.join(wav_root_dir, '**/metadata.csv')
    for record in glob(glob_dir, recursive=True):
        if any(map(lambda sk: sk in record, SKIP_LIST)):  # pylint: disable=cell-var-from-loop
            continue
        with open(record, 'r') as rec:
            for re in rec.readlines():
                re = re.strip().split('|')
                audio = os.path.join(os.path.dirname(record), 'wavs', re[0] + '.wav')
                transcript = re[2]
                samples.append((audio, transcript))

    counter = get_counter()
    num_samples = len(samples)
    rows = []

    print("Importing WAV files...")
    pool = Pool()
    bar = progressbar.ProgressBar(max_value=num_samples, widgets=SIMPLE_BAR)
    for i, processed in enumerate(pool.imap_unordered(one_sample, samples), start=1):
        counter += processed[0]
        rows += processed[1]
        bar.update(i)
    bar.update(num_samples)
    pool.close()
    pool.join()

    with open(target_csv_template.format('train'), 'w') as train_csv_file:  # 80%
        with open(target_csv_template.format('dev'), 'w') as dev_csv_file:  # 10%
            with open(target_csv_template.format('test'), 'w') as test_csv_file:  # 10%
                train_writer = csv.DictWriter(train_csv_file, fieldnames=FIELDNAMES)
                train_writer.writeheader()
                dev_writer = csv.DictWriter(dev_csv_file, fieldnames=FIELDNAMES)
                dev_writer.writeheader()
                test_writer = csv.DictWriter(test_csv_file, fieldnames=FIELDNAMES)
                test_writer.writeheader()

                for i, item in enumerate(rows):
                    transcript = validate_label(item[2])
                    if not transcript:
                        continue
                    wav_filename = item[0]
                    i_mod = i % 10
                    if i_mod == 0:
                        writer = test_writer
                    elif i_mod == 1:
                        writer = dev_writer
                    else:
                        writer = train_writer
                    writer.writerow(dict(
                        wav_filename=os.path.relpath(wav_filename, extracted_dir),
                        wav_filesize=os.path.getsize(wav_filename),
                        transcript=transcript,
                    ))

    imported_samples = get_imported_samples(counter)
    assert counter['all'] == num_samples
    assert len(rows) == imported_samples

    print_import_report(counter, SAMPLE_RATE, MAX_SECS)
Пример #9
0
def _maybe_convert_sets(target_dir, extracted_data):
    extracted_dir = path.join(target_dir, extracted_data)
    # override existing CSV with normalized one
    target_csv_template = os.path.join(
        target_dir, ARCHIVE_DIR_NAME,
        ARCHIVE_NAME.replace('.tar.gz', '_{}.csv'))
    if os.path.isfile(target_csv_template):
        return

    wav_root_dir = os.path.join(extracted_dir)

    all_files = [
        'transcripts/train/yaounde/fn_text.txt',
        'transcripts/train/ca16_conv/transcripts.txt',
        'transcripts/train/ca16_read/conditioned.txt',
        'transcripts/dev/niger_west_african_fr/transcripts.txt',
        'speech/dev/niger_west_african_fr/niger_wav_file_name_transcript.tsv',
        'transcripts/devtest/ca16_read/conditioned.txt',
        'transcripts/test/ca16/prompts.txt',
    ]

    transcripts = {}
    for tr in all_files:
        with open(os.path.join(target_dir, ARCHIVE_DIR_NAME, tr),
                  'r') as tr_source:
            for line in tr_source.readlines():
                line = line.strip()

                if '.tsv' in tr:
                    sep = '	'
                else:
                    sep = ' '

                audio = os.path.basename(line.split(sep)[0])

                if not ('.wav' in audio):
                    if '.tdf' in audio:
                        audio = audio.replace('.tdf', '.wav')
                    else:
                        audio += '.wav'

                transcript = ' '.join(line.split(sep)[1:])
                transcripts[audio] = transcript

    # Get audiofile path and transcript for each sentence in tsv
    samples = []
    glob_dir = os.path.join(wav_root_dir, '**/*.wav')
    for record in glob(glob_dir, recursive=True):
        record_file = os.path.basename(record)
        if record_file in transcripts:
            samples.append((record, transcripts[record_file]))

    # Keep track of how many samples are good vs. problematic
    counter = get_counter()
    num_samples = len(samples)
    rows = []

    print("Importing WAV files...")
    pool = Pool()
    bar = progressbar.ProgressBar(max_value=num_samples, widgets=SIMPLE_BAR)
    for i, processed in enumerate(pool.imap_unordered(one_sample, samples),
                                  start=1):
        counter += processed[0]
        rows += processed[1]
        bar.update(i)
    bar.update(num_samples)
    pool.close()
    pool.join()

    with open(target_csv_template.format('train'),
              'w') as train_csv_file:  # 80%
        with open(target_csv_template.format('dev'),
                  'w') as dev_csv_file:  # 10%
            with open(target_csv_template.format('test'),
                      'w') as test_csv_file:  # 10%
                train_writer = csv.DictWriter(train_csv_file,
                                              fieldnames=FIELDNAMES)
                train_writer.writeheader()
                dev_writer = csv.DictWriter(dev_csv_file,
                                            fieldnames=FIELDNAMES)
                dev_writer.writeheader()
                test_writer = csv.DictWriter(test_csv_file,
                                             fieldnames=FIELDNAMES)
                test_writer.writeheader()

                for i, item in enumerate(rows):
                    transcript = validate_label(item[2])
                    if not transcript:
                        continue
                    wav_filename = item[0]
                    i_mod = i % 10
                    if i_mod == 0:
                        writer = test_writer
                    elif i_mod == 1:
                        writer = dev_writer
                    else:
                        writer = train_writer
                    writer.writerow(
                        dict(
                            wav_filename=wav_filename,
                            wav_filesize=os.path.getsize(wav_filename),
                            transcript=transcript,
                        ))

    imported_samples = get_imported_samples(counter)
    assert counter['all'] == num_samples
    assert len(rows) == imported_samples

    print_import_report(counter, SAMPLE_RATE, MAX_SECS)