Пример #1
0
def main():
    xs = np.linspace(0, 1, 20)

    plt.close('all')
    fig, (ax1, ax2, ax3) = plt.subplots(1,
                                        3,
                                        figsize=(cm_to_inch(15),
                                                 cm_to_inch(5)),
                                        sharey=True)

    gamma = 1
    upwards = xs * gamma
    downwards = xs * -gamma
    color = tum_color(0)
    axis = ax1
    plot_the_shit(axis, color, downwards, upwards, xs, legend=u'$^{13}$C')
    axis.set_ylabel(u'$E_Z$ (arb. u.)')

    gamma = 0.6
    upwards = xs * gamma
    downwards = xs * -gamma
    color = tum_color(5)
    axis = ax2
    plot_the_shit(axis, color, downwards, upwards, xs, legend=u'$^{14}$N')
    axis.plot_for_thesis([0, 1], [0, 0], color=color)

    gamma = -0.4
    upwards = xs * gamma
    downwards = xs * -gamma
    color = tum_color(2)
    axis = ax3
    plot_the_shit(axis, color, downwards, upwards, xs, legend=u'$^{15}$N')

    plt.tight_layout()
    plt.savefig('zeeman_splitting.png', dpi=300)
Пример #2
0
def main():
    ks = np.arange(0, 11, 1)

    plt.close('all')
    fig, (ax1, ax2) = plt.subplots(1,
                                   2,
                                   figsize=(cm_to_inch(15), cm_to_inch(6)))

    polarizations = calc_polarization(ks)
    ax1.plot_for_thesis(ks, polarizations, '.', color=tum_color(0))
    ax1.set_xlabel(r'$n$')
    ax1.set_xticks(ks[::2])
    ax1.set_ylabel(r'$ P_n $')
    ax1.__set_ticks(np.arange(0, 1.1, 0.25))

    ax2.plot_for_thesis(ks,
                        percentage_of_polarized_states(polarizations),
                        '.',
                        color=tum_color(0))
    ax2.set_xlabel(r'$n$')
    ax2.set_xticks(ks[::2])
    ax2.set_ylabel(r'$ \dfrac{N_0}{N_0 + N_{\pm 1}} $')
    ax2.__set_ticks(np.arange(0.5, 1.01, 0.1))

    plt.tight_layout()
    plt.savefig('polarization.png', dpi=300)
Пример #3
0
def plot_and_save_odmr_spectrum(cts_broad, cts_narrow, freqs_broad,
                                freqs_narrow):
    fig, (ax1, ax2) = plt.subplots(1, 2)
    fig.set_figheight(cm_to_inch(5.5))
    fig.set_figwidth(cm_to_inch(15))
    plot_one_axis(ax1, cts_broad, freqs_broad)
    plot_one_axis(ax2, cts_narrow, freqs_narrow)
    plt.tight_layout()
    plt.savefig('pulsed_odmr_spectrum.png', dpi=500)
Пример #4
0
def plot_and_save_odmr_spectrum(cts, freqs):
    plt.figure(figsize=(inches.cm_to_inch(15), inches.cm_to_inch(5.5)))
    plt.plot(
        freqs * 1e-9,
        graph_transformation.smooth_array_by_rolling_average(cts, 2) * 1e-3,
        '.')
    plt.xlabel('mw frequency (GHz)')
    plt.ylabel('luminescence (kcts/s)')
    plt.tight_layout()
    plt.savefig('cw_odmr_spectrum.png', dpi=500)
Пример #5
0
 def plot(self):
     plt.figure(figsize=(cm_to_inch(15), cm_to_inch(5.5)))
     luminescences = self.__load_luminescences()
     average = np.average(luminescences[:20])
     plt.ylabel('luminescence (normalized)')
     plt.xlabel('time (h)')
     plt.plot(1.5 * np.array(list(range(len(luminescences)))) / 600,
              luminescences / average,
              color=tum_color(0))
     plt.tight_layout()
     plt.savefig('luminescence_fluctuation.png', dpi=500)
Пример #6
0
def main():
    file_data = load_file_data()

    plt.close('all')
    plt.figure(figsize=(cm_to_inch(7.5), cm_to_inch(5)))
    plt.imshow(file_data['result'], vmax=8e4, cmap=tum_jet, interpolation='bilinear', origin='lower',
               extent=[0, x_extent(file_data), 0, y_extent(file_data)])
    plt.xlabel(r'$x$ ($\si{\micro \meter}$)')
    plt.ylabel(r'$y$ ($\si{\micro \meter}$)')
    plt.yticks([0, 10, 20])
    cbar = plt.colorbar(aspect=10)
    cbar.ax.set_yticklabels(['20', '40', '60', '80'])
    cbar.set_label(r'luminescence (kcts/s)')
    plt.tight_layout()
    plt.savefig('confocal_scan.png', dpi=500)
Пример #7
0
def plot_t1():
    xs = np.linspace(0, 3, 100)
    ys = np.exp(-xs)

    plt.close('all')
    plt.figure(figsize=(inch.cm_to_inch(7.5), inch.cm_to_inch(5)))
    plt.plot(xs, ys, color=tum.tum_color(0))
    plt.ylim((-0.1, 1.1))
    plt.yticks([0, 1], [
        r'$\braket{\boldsymbol{\mu}_0}_z$',
        r'$\left| \braket{\boldsymbol{\mu}_S} \right|$'
    ])
    plt.ylabel(r'$z$-component')
    plt.xlabel('time (arb.u.)')
    plt.tight_layout()
    plt.savefig('t1_decay.png', dpi=300)
Пример #8
0
def plot_t2():
    xs = np.linspace(0, 3, 1000)
    damping = 0.4
    ys = np.exp(-xs * damping) * np.cos(10 * xs)
    upper_envelope = np.exp(-xs * damping)
    lower_envelope = -np.exp(-xs * damping)

    plt.close('all')
    plt.figure(figsize=(inch.cm_to_inch(7.5), inch.cm_to_inch(5)))
    plt.plot(xs, ys, color=tum.tum_color(0))
    alpha = 0.4
    plt.plot(xs, upper_envelope, '--', color=tum.tum_color(0), alpha=alpha)
    plt.plot(xs, lower_envelope, '--', color=tum.tum_color(0), alpha=alpha)
    plt.ylim((-1.1, 1.1))
    plt.yticks([-1, 0, 1], [
        r'$-\left| \braket{\boldsymbol{\mu}_S} \right|$', 0,
        r'$\left| \braket{\boldsymbol{\mu}_S} \right|$'
    ])
    plt.ylabel(r'$y$-component')
    plt.xlabel('time (arb.u.)')
    plt.tight_layout()
    plt.savefig('t2_decay.png', dpi=300)
Пример #9
0
 def __create_and_scale_figure_and_axes(self):
     self.fig, self.axes = plt.subplots(nrows=2, ncols=2)
     self.fig.set_figheight(cm_to_inch(15))
     self.fig.set_figwidth(cm_to_inch(15))
Пример #10
0
 def __init__(self):
     plt.rcParams['text.latex.preamble'] = [r"\usepackage{siunitx}"]
     self.data = load_echo_data()
     self.fig = plt.figure(figsize=(cm_to_inch(15), cm_to_inch(6.5)))
Пример #11
0
 def create_figure_with_two_axes():
     fig, (ax1, ax2) = plt.subplots(1, 2)
     fig.set_figheight(cm_to_inch(5.5))
     fig.set_figwidth(cm_to_inch(15))
     return fig, ax1, ax2
Пример #12
0
 def __init__(self):
     self.path = "//file/e24/Projects/ReinhardLab/data_setup_nv1/180704_hf_setup_deer_tests"
     self.fig = plt.figure(figsize=(cm_to_inch(15), cm_to_inch(6.5)))
     self.slow_rabis = self.load_file('pulsed.000.mat')
     self.fast_rabis = self.load_file('pulsed.001.mat')