def train(): evaluate_queue = queue.Queue() evaluate_task = keras_util.EvaluateTask(evaluate_queue) evaluate_task.setDaemon(True) evaluate_task.start() checkpoint = keras_util.EvaluateCallback(model_config, evaluate_queue) start = time.time() model_config.save_log("####### start train model") init_stage = model_config.get_init_stage() model_config.save_log("####### init stage is %d" % init_stage) for i in range(init_stage, len(model_config.epoch)): model_config.save_log("####### lr=%f, freeze layers=%2f epoch=%d" % ( model_config.lr[i], model_config.freeze_layers[i], model_config.epoch[i])) clr = keras_util.CyclicLrCallback(base_lr=model_config.lr[i], max_lr=model_config.lr[i] * 5, step_size=model_config.get_steps_per_epoch(i) / 2) train_flow = data_loader.KerasGenerator(model_config=model_config, featurewise_center=True, featurewise_std_normalization=True, width_shift_range=0.15, height_shift_range=0.1, horizontal_flip=True, real_transform=True, rescale=1. / 256).flow_from_files(model_config.train_files, mode="fit", target_size=model_config.image_size, batch_size= model_config.train_batch_size[i], shuffle=True, label_position=model_config.label_position) if i == 0: model_config.save_log("####### initial epoch is 0, end epoch is %d" % model_config.epoch[i]) model = get_model(freeze_layers=model_config.freeze_layers[i], lr=model_config.lr[i], output_dim=len(model_config.label_position)) model.fit_generator(generator=train_flow, steps_per_epoch=model_config.get_steps_per_epoch(i), epochs=model_config.epoch[i], workers=16, verbose=1, callbacks=[checkpoint, clr]) else: model = get_model(freeze_layers=model_config.freeze_layers[i], output_dim=len(model_config.label_position), lr=model_config.lr[i], weights=None) if i == init_stage: model_config.save_log( "####### load weight file: %s" % model_config.get_weights_path(model_config.initial_epoch)) model.load_weights(model_config.get_weights_path(model_config.initial_epoch)) model_config.save_log("####### initial epoch is %d, end epoch is %d" % ( model_config.initial_epoch, model_config.epoch[i])) model.fit_generator(generator=train_flow, steps_per_epoch=model_config.get_steps_per_epoch(i), epochs=model_config.epoch[i], initial_epoch=model_config.initial_epoch, workers=16, verbose=1, callbacks=[checkpoint, clr]) else: model_config.save_log( "####### load weight file: %s" % model_config.get_weights_path(model_config.epoch[i - 1])) model.load_weights(model_config.get_weights_path(model_config.epoch[i - 1])) model_config.save_log( "####### initial epoch is %d, end epoch is %d" % (model_config.epoch[i - 1], model_config.epoch[i])) model.fit_generator(generator=train_flow, steps_per_epoch=model_config.get_steps_per_epoch(i), epochs=model_config.epoch[i], initial_epoch=model_config.epoch[i - 1], workers=16, verbose=1, callbacks=[checkpoint, clr]) model_config.save_log("####### train model spend %d seconds" % (time.time() - start)) model_config.save_log( "####### train model spend %d seconds average" % ((time.time() - start) / model_config.epoch[-1]))
def train(): cb = [] evaluate_queue = queue.Queue() evaluate_task = keras_util.EvaluateTask(evaluate_queue) evaluate_task.setDaemon(True) evaluate_task.start() checkpoint = keras_util.EvaluateCallback(model_config, evaluate_queue) cb.append(checkpoint) start = time.time() model_config.save_log("####### start train model") init_stage = model_config.get_init_stage() model_config.save_log("####### init stage is %d" % init_stage) for i in range(init_stage, len(model_config.epoch)): model_config.save_log( "####### lr=%f, freeze layers=%2f epoch=%d" % (model_config.lr[i], model_config.freeze_layers[i], model_config.epoch[i])) if model_config.clr: clr = keras_util.CyclicLrCallback( base_lr=model_config.lr[i], max_lr=model_config.lr[i] * 5, step_size=model_config.get_steps_per_epoch(i) / 2) cb.append(clr) train_flow = data_loader.KerasGenerator(model_config=model_config) \ .flow_from_files(model_config.train_files, mode="fit", target_size=model_config.image_size, batch_size= model_config.train_batch_size[i], shuffle=True, label_position=model_config.label_position) if i == 0: model_config.save_log( "####### initial epoch is 0, end epoch is %d" % model_config.epoch[i]) model = get_model(freeze_layers=model_config.freeze_layers[i], lr=model_config.lr[i], output_dim=len(model_config.label_position)) model.fit_generator( generator=train_flow, steps_per_epoch=model_config.get_steps_per_epoch(i), epochs=model_config.epoch[i], workers=16, verbose=1, callbacks=cb) else: model = get_model(freeze_layers=model_config.freeze_layers[i], output_dim=len(model_config.label_position), lr=model_config.lr[i], weights=None) if i == init_stage: model_config.save_log( "####### load weight file: %s" % model_config.get_weights_path(model_config.initial_epoch)) model.load_weights( model_config.get_weights_path(model_config.initial_epoch)) model_config.save_log( "####### initial epoch is %d, end epoch is %d" % (model_config.initial_epoch, model_config.epoch[i])) model.fit_generator( generator=train_flow, steps_per_epoch=model_config.get_steps_per_epoch(i), epochs=model_config.epoch[i], initial_epoch=model_config.initial_epoch, workers=16, verbose=1, callbacks=cb) else: model_config.save_log( "####### load weight file: %s" % model_config.get_weights_path(model_config.epoch[i - 1])) model.load_weights( model_config.get_weights_path(model_config.epoch[i - 1])) model_config.save_log( "####### initial epoch is %d, end epoch is %d" % (model_config.epoch[i - 1], model_config.epoch[i])) model.fit_generator( generator=train_flow, steps_per_epoch=model_config.get_steps_per_epoch(i), epochs=model_config.epoch[i], initial_epoch=model_config.epoch[i - 1], workers=16, verbose=1, callbacks=cb) model_config.save_log("####### train model spend %d seconds" % (time.time() - start)) model_config.save_log("####### train model spend %d seconds average" % ((time.time() - start) / model_config.epoch[-1])) # 等待最后一次预测结束 time.sleep(60)
def train(): evaluate_queue = queue.Queue() evaluate_task = keras_util.EvaluateTask(evaluate_queue) evaluate_task.setDaemon(True) evaluate_task.start() checkpoint = keras_util.EvaluateCallback(model_config, evaluate_queue) tensorboard = keras_util.TensorBoardCallback( log_dir=model_config.record_dir, log_every=20, model_config=model_config) start = time.time() print("####### start train model") for i in range(len(model_config.epoch)): print("####### lr=%f, freeze layers=%2f epoch=%d" % (model_config.lr[i], model_config.freeze_layers[i], model_config.epoch[i])) clr = keras_util.CyclicLrCallback( base_lr=model_config.lr[i], max_lr=model_config.lr[i] * 5, step_size=model_config.get_steps_per_epoch(i) / 2) train_flow = data_loader.KerasGenerator(model_config=model_config, width_shift_range=0.15, height_shift_range=0.15, horizontal_flip=True, real_transform=True). \ flow_from_files(model_config.train_files, mode="fit", target_size=model_config.image_size, batch_size=model_config.train_batch_size[i], shuffle=True, label_position=model_config.label_position) if i == 0: model = get_model(freeze_layers=model_config.freeze_layers[i], lr=model_config.lr[i], output_dim=len(model_config.label_position)) model.fit_generator( generator=train_flow, steps_per_epoch=model_config.get_steps_per_epoch(i), epochs=model_config.epoch[i], workers=16, verbose=1, callbacks=[checkpoint, clr, tensorboard]) else: model = get_model(freeze_layers=model_config.freeze_layers[i], output_dim=len(model_config.label_position), lr=model_config.lr[i], weights=None) print("####### load weight file: %s" % model_config.get_weights_path(model_config.epoch[i - 1])) model.load_weights( model_config.get_weights_path(model_config.epoch[i - 1])) model.fit_generator( generator=train_flow, steps_per_epoch=model_config.get_steps_per_epoch(i), epochs=model_config.epoch[i], initial_epoch=model_config.epoch[i - 1], workers=16, verbose=1, callbacks=[checkpoint, clr, tensorboard]) print("####### train model spend %d seconds" % (time.time() - start)) print("####### train model spend %d seconds average" % ((time.time() - start) / model_config.epoch[-1]))