Пример #1
0
    def eval(self, z, y=None):
        out = self.sess.run(self.G, feed_dict = {
            self.Z: z[:, :self.noise_dim],
            self.c_dis: y,
            self.c_cont: z[:,self.noise_dim:]
        })
        out = processing.img_deprocessing(out)
        fig = processing.show_images(out,'generated/save.png')

        return fig
Пример #2
0
 def eval(self, z, y=None):
     out = self.sess.run(self.G, feed_dict={self.Z: z, self.y: y})
     out = processing.img_deprocessing(out)
     return processing.show_images(out)
Пример #3
0
 def eval(self, z, y=None):
     out = self.sess.run(
         self.y_queue[self.num_stack],
         feed_dict = {self.Z: z, self.y: y, self.X: np.zeros([len(y), self.input_shape[0]])})
     out = processing.img_deprocessing(out)
     return processing.show_images(out)
Пример #4
0
 def eval(self, z, y=None):
     out = self.sess.run(self.G, feed_dict = {self.Z: z, self.y: y, self.X: np.zeros([self.y[0], self.input_shape[0]])})
     out = processing.img_deprocessing(out)
     return processing.show_images(out)
Пример #5
0
    def eval(self, z, y=None):
        out = self.sess.run(self.G, feed_dict={self.Z: z})
        out = processing.img_deprocessing(out)
        fig = processing.show_images(out, 'generated/save.png')

        return fig