def __init__(self, args): self.args = args # build model and load weights self.model, _, _ = build_model(args) checkpoint = torch.load(args.resume, map_location='cpu') self.model = load_model(self.model, args.resume) self.model = self.model.cuda() self.model.eval() # mkidr save_dir vid_name, prefix = args.input_video.split('/')[-1].split('.') self.save_root = os.path.join(args.output_dir, 'results', vid_name) Path(self.save_root).mkdir(parents=True, exist_ok=True) self.save_img_root = os.path.join(self.save_root, 'imgs') Path(self.save_img_root).mkdir(parents=True, exist_ok=True) self.txt_root = os.path.join(self.save_root, f'{vid_name}.txt') self.vid_root = os.path.join(self.save_root, args.input_video.split('/')[-1]) # build dataloader and tracker self.dataloader = LoadVideo(args.input_video) self.tr_tracker = MOTR()
def main(args): utils.init_distributed_mode(args) print("git:\n {}\n".format(utils.get_sha())) if args.frozen_weights is not None: assert args.masks, "Frozen training is meant for segmentation only" print(args) device = torch.device(args.device) # fix the seed for reproducibility seed = args.seed + utils.get_rank() torch.manual_seed(seed) np.random.seed(seed) random.seed(seed) model, criterion, postprocessors = build_model(args) model.to(device) model_without_ddp = model n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) print('number of params:', n_parameters) dataset_train = build_dataset(image_set='train', args=args) dataset_val = build_dataset(image_set='val', args=args) if args.distributed: if args.cache_mode: sampler_train = samplers.NodeDistributedSampler(dataset_train) sampler_val = samplers.NodeDistributedSampler(dataset_val, shuffle=False) else: sampler_train = samplers.DistributedSampler(dataset_train) sampler_val = samplers.DistributedSampler(dataset_val, shuffle=False) else: sampler_train = torch.utils.data.RandomSampler(dataset_train) sampler_val = torch.utils.data.SequentialSampler(dataset_val) batch_sampler_train = torch.utils.data.BatchSampler( sampler_train, args.batch_size, drop_last=True) if args.dataset_file in ['e2e_mot', 'mot', 'ori_mot', 'e2e_static_mot', 'e2e_joint']: collate_fn = utils.mot_collate_fn else: collate_fn = utils.collate_fn data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train, collate_fn=collate_fn, num_workers=args.num_workers, pin_memory=True) data_loader_val = DataLoader(dataset_val, args.batch_size, sampler=sampler_val, drop_last=False, collate_fn=collate_fn, num_workers=args.num_workers, pin_memory=True) # lr_backbone_names = ["backbone.0", "backbone.neck", "input_proj", "transformer.encoder"] def match_name_keywords(n, name_keywords): out = False for b in name_keywords: if b in n: out = True break return out # for n, p in model_without_ddp.named_parameters(): # print(n) param_dicts = [ { "params": [p for n, p in model_without_ddp.named_parameters() if not match_name_keywords(n, args.lr_backbone_names) and not match_name_keywords(n, args.lr_linear_proj_names) and p.requires_grad], "lr": args.lr, }, { "params": [p for n, p in model_without_ddp.named_parameters() if match_name_keywords(n, args.lr_backbone_names) and p.requires_grad], "lr": args.lr_backbone, }, { "params": [p for n, p in model_without_ddp.named_parameters() if match_name_keywords(n, args.lr_linear_proj_names) and p.requires_grad], "lr": args.lr * args.lr_linear_proj_mult, } ] if args.sgd: optimizer = torch.optim.SGD(param_dicts, lr=args.lr, momentum=0.9, weight_decay=args.weight_decay) else: optimizer = torch.optim.AdamW(param_dicts, lr=args.lr, weight_decay=args.weight_decay) lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop) if args.distributed: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True) model_without_ddp = model.module if args.dataset_file == "coco_panoptic": # We also evaluate AP during panoptic training, on original coco DS coco_val = datasets.coco.build("val", args) base_ds = get_coco_api_from_dataset(coco_val) else: base_ds = get_coco_api_from_dataset(dataset_val) if args.frozen_weights is not None: checkpoint = torch.load(args.frozen_weights, map_location='cpu') model_without_ddp.detr.load_state_dict(checkpoint['model']) if args.pretrained is not None: model_without_ddp = load_model(model_without_ddp, args.pretrained) output_dir = Path(args.output_dir) if args.resume: if args.resume.startswith('https'): checkpoint = torch.hub.load_state_dict_from_url( args.resume, map_location='cpu', check_hash=True) else: checkpoint = torch.load(args.resume, map_location='cpu') missing_keys, unexpected_keys = model_without_ddp.load_state_dict(checkpoint['model'], strict=False) unexpected_keys = [k for k in unexpected_keys if not (k.endswith('total_params') or k.endswith('total_ops'))] if len(missing_keys) > 0: print('Missing Keys: {}'.format(missing_keys)) if len(unexpected_keys) > 0: print('Unexpected Keys: {}'.format(unexpected_keys)) if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint: import copy p_groups = copy.deepcopy(optimizer.param_groups) optimizer.load_state_dict(checkpoint['optimizer']) for pg, pg_old in zip(optimizer.param_groups, p_groups): pg['lr'] = pg_old['lr'] pg['initial_lr'] = pg_old['initial_lr'] # print(optimizer.param_groups) lr_scheduler.load_state_dict(checkpoint['lr_scheduler']) # todo: this is a hack for doing experiment that resume from checkpoint and also modify lr scheduler (e.g., decrease lr in advance). args.override_resumed_lr_drop = True if args.override_resumed_lr_drop: print('Warning: (hack) args.override_resumed_lr_drop is set to True, so args.lr_drop would override lr_drop in resumed lr_scheduler.') lr_scheduler.step_size = args.lr_drop lr_scheduler.base_lrs = list(map(lambda group: group['initial_lr'], optimizer.param_groups)) lr_scheduler.step(lr_scheduler.last_epoch) args.start_epoch = checkpoint['epoch'] + 1 # check the resumed model # if not args.eval: # test_stats, coco_evaluator = evaluate( # model, criterion, postprocessors, data_loader_val, base_ds, device, args.output_dir # ) if args.eval: test_stats, coco_evaluator = evaluate(model, criterion, postprocessors, data_loader_val, base_ds, device, args.output_dir) if args.output_dir: utils.save_on_master(coco_evaluator.coco_eval["bbox"].eval, output_dir / "eval.pth") return print("Start training") start_time = time.time() train_func = train_one_epoch if args.dataset_file in ['e2e_mot', 'mot', 'ori_mot', 'e2e_static_mot', 'e2e_joint']: train_func = train_one_epoch_mot dataset_train.set_epoch(args.start_epoch) dataset_val.set_epoch(args.start_epoch) for epoch in range(args.start_epoch, args.epochs): if args.distributed: sampler_train.set_epoch(epoch) train_stats = train_func( model, criterion, data_loader_train, optimizer, device, epoch, args.clip_max_norm) lr_scheduler.step() if args.output_dir: checkpoint_paths = [output_dir / 'checkpoint.pth'] # extra checkpoint before LR drop and every 5 epochs if (epoch + 1) % args.lr_drop == 0 or (epoch + 1) % args.save_period == 0 or (((args.epochs >= 100 and (epoch + 1) > 100) or args.epochs < 100) and (epoch + 1) % 5 == 0): checkpoint_paths.append(output_dir / f'checkpoint{epoch:04}.pth') for checkpoint_path in checkpoint_paths: utils.save_on_master({ 'model': model_without_ddp.state_dict(), 'optimizer': optimizer.state_dict(), 'lr_scheduler': lr_scheduler.state_dict(), 'epoch': epoch, 'args': args, }, checkpoint_path) # if args.dataset_file in ['e2e_mot', 'mot', 'ori_mot', 'e2e_static_mot', 'e2e_joint']: # detmotdet_evaluate(model, data_loader_val, device) # log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, # 'epoch': epoch, # 'n_parameters': n_parameters} # if args.output_dir and utils.is_main_process(): # with (output_dir / "log.txt").open("a") as f: # f.write(json.dumps(log_stats) + "\n") if args.dataset_file != 'mot' and args.dataset_file != 'ori_mot' and args.dataset_file != 'e2e_mot' and args.dataset_file != 'e2e_static_mot' and args.dataset_file != 'e2e_joint': test_stats, coco_evaluator = evaluate( model, criterion, postprocessors, data_loader_val, base_ds, device, args.output_dir ) log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, **{f'test_{k}': v for k, v in test_stats.items()}, 'epoch': epoch, 'n_parameters': n_parameters} if args.output_dir and utils.is_main_process(): with (output_dir / "log.txt").open("a") as f: f.write(json.dumps(log_stats) + "\n") # for evaluation logs if coco_evaluator is not None: (output_dir / 'eval').mkdir(exist_ok=True) if "bbox" in coco_evaluator.coco_eval: filenames = ['latest.pth'] if epoch % 50 == 0: filenames.append(f'{epoch:03}.pth') for name in filenames: torch.save(coco_evaluator.coco_eval["bbox"].eval, output_dir / "eval" / name) if args.dataset_file in ['e2e_mot', 'mot', 'ori_mot', 'e2e_static_mot', 'e2e_joint']: dataset_train.step_epoch() dataset_val.step_epoch() total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('Training time {}'.format(total_time_str))
def main(args): utils.init_distributed_mode(args) print("git:\n {}\n".format(utils.get_sha())) if args.frozen_weights is not None: assert args.masks, "Frozen training is meant for segmentation only" print(args) device = torch.device(args.device) # fix the seed for reproducibility seed = args.seed + utils.get_rank() torch.manual_seed(seed) np.random.seed(seed) random.seed(seed) model, criterion, postprocessors = build_model(args) model.to(device) model_without_ddp = model if args.distributed: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.gpu]) model_without_ddp = model.module n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) print('number of params:', n_parameters) param_dicts = [ { "params": [ p for n, p in model_without_ddp.named_parameters() if "backbone" not in n and p.requires_grad ] }, { "params": [ p for n, p in model_without_ddp.named_parameters() if "backbone" in n and p.requires_grad ], "lr": args.lr_backbone, }, ] optimizer = torch.optim.AdamW(param_dicts, lr=args.lr, weight_decay=args.weight_decay) lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop) dataset_train = build_dataset(image_set='train', args=args) dataset_val = build_dataset(image_set='val', args=args) if args.distributed: sampler_train = DistributedSampler(dataset_train) sampler_val = DistributedSampler(dataset_val, shuffle=False) else: sampler_train = torch.utils.data.RandomSampler(dataset_train) sampler_val = torch.utils.data.SequentialSampler(dataset_val) batch_sampler_train = torch.utils.data.BatchSampler(sampler_train, args.batch_size, drop_last=True) data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train, collate_fn=utils.collate_fn, num_workers=args.num_workers) data_loader_val = DataLoader(dataset_val, batch_size=1, sampler=sampler_val, drop_last=False, collate_fn=utils.collate_fn, num_workers=args.num_workers) if args.dataset_file == "coco_panoptic": # We also evaluate AP during panoptic training, on original coco DS coco_val = datasets.coco.build("val", args) base_ds = get_coco_api_from_dataset(coco_val) else: base_ds = get_coco_api_from_dataset(dataset_val) if args.frozen_weights is not None: checkpoint = torch.load(args.frozen_weights, map_location='cpu') model_without_ddp.detr.load_state_dict(checkpoint['model']) output_dir = Path(args.output_dir) if args.resume: if args.resume.startswith('https'): checkpoint = torch.hub.load_state_dict_from_url(args.resume, map_location='cpu', check_hash=True) else: checkpoint = torch.load(args.resume, map_location='cpu') # model_without_ddp.load_state_dict(checkpoint['model'], strict=False) model_without_ddp = load_model(model_without_ddp, args.resume) if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint: optimizer.load_state_dict(checkpoint['optimizer']) lr_scheduler.load_state_dict(checkpoint['lr_scheduler']) args.start_epoch = checkpoint['epoch'] + 1 if args.eval: if args.dataset_file == 'mot': motdet_evaluate(model, data_loader_val) if args.dataset_file == 'coco': test_stats, coco_evaluator = evaluate(model, criterion, postprocessors, data_loader_val, base_ds, device, args.output_dir) if args.output_dir: utils.save_on_master(coco_evaluator.coco_eval["bbox"].eval, output_dir / "eval.pth") return print("Start training") start_time = time.time() for epoch in range(args.start_epoch, args.epochs): if args.distributed: sampler_train.set_epoch(epoch) train_stats = train_one_epoch(model, criterion, data_loader_train, optimizer, device, epoch, args.clip_max_norm) lr_scheduler.step() if args.output_dir: checkpoint_paths = [output_dir / 'checkpoint.pth'] # extra checkpoint before LR drop and every 100 epochs if (epoch + 1) % args.lr_drop == 0 or (epoch + 1) % 100 == 0: checkpoint_paths.append(output_dir / f'checkpoint{epoch:04}.pth') for checkpoint_path in checkpoint_paths: utils.save_on_master( { 'model': model_without_ddp.state_dict(), 'optimizer': optimizer.state_dict(), 'lr_scheduler': lr_scheduler.state_dict(), 'epoch': epoch, 'args': args, }, checkpoint_path) if args.dataset_file == 'mot': motdet_evaluate(model, data_loader_val) log_stats = { **{f'train_{k}': v for k, v in train_stats.items()}, 'epoch': epoch, 'n_parameters': n_parameters } if args.output_dir and utils.is_main_process(): with (output_dir / "log.txt").open("a") as f: f.write(json.dumps(log_stats) + "\n") if args.dataset_file != 'mot': test_stats, coco_evaluator = evaluate(model, criterion, postprocessors, data_loader_val, base_ds, device, args.output_dir) log_stats = { **{f'train_{k}': v for k, v in train_stats.items()}, **{f'test_{k}': v for k, v in test_stats.items()}, 'epoch': epoch, 'n_parameters': n_parameters } if args.output_dir and utils.is_main_process(): with (output_dir / "log.txt").open("a") as f: f.write(json.dumps(log_stats) + "\n") # for evaluation logs if coco_evaluator is not None: (output_dir / 'eval').mkdir(exist_ok=True) if "bbox" in coco_evaluator.coco_eval: filenames = ['latest.pth'] if epoch % 50 == 0: filenames.append(f'{epoch:03}.pth') for name in filenames: torch.save(coco_evaluator.coco_eval["bbox"].eval, output_dir / "eval" / name) total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('Training time {}'.format(total_time_str))
print("totally {} dts {} occlusion dts".format(total_dts, total_occlusion_dts)) if __name__ == '__main__': parser = argparse.ArgumentParser('DETR training and evaluation script', parents=[get_args_parser()]) args = parser.parse_args() if args.output_dir: Path(args.output_dir).mkdir(parents=True, exist_ok=True) # load model and weights detr, _, _ = build_model(args) checkpoint = torch.load(args.resume, map_location='cpu') detr = load_model(detr, args.resume) detr.eval() detr = detr.cuda() # '''for MOT17 submit''' sub_dir = 'MOT17/images/test' seq_nums = [ 'MOT17-01-SDP', 'MOT17-03-SDP', 'MOT17-06-SDP', 'MOT17-07-SDP', 'MOT17-08-SDP', 'MOT17-12-SDP', 'MOT17-14-SDP' ] for seq_num in seq_nums: det = Detector(args, model=detr, seq_num=seq_num) det.detect() """copy reuslts for same sequences""" repeated_seq_nums = [