Пример #1
0
def re_evalute(CONST):
    threshold = float(CONST.THRESHOLD)

    from util.utils import load_pickle as load
    gru = load(CONST.DATA_DIR + "GRU" + "predictions")
    lstm = load(CONST.DATA_DIR + "LSTM" + "predictions")
    biRNN = load(CONST.DATA_DIR + "BiRNN" + "predictions")

    print("###########  GRU ###############")
    find_best_slot1("gru", gru["predictions"], gru["y"])
    print("########### LSTM ##############")
    find_best_slot1("lstm", lstm["predictions"], lstm["y"])
    print("########### BiRNN LSTM ##############")
    find_best_slot1("birnn", biRNN["predictions"], biRNN["y"])
Пример #2
0
def make_loss_graph(CONST):
    from util.utils import load_pickle as load
    gru = load(CONST.DATA_DIR + 'GRU')
    lstm = load(CONST.DATA_DIR + 'LSTM')
    birnn = load(CONST.DATA_DIR + 'BiRNN')

    cutoff = 105

    gru = gru[:cutoff]
    lstm = lstm[:cutoff]
    birnn= birnn[:cutoff]

    import matplotlib.pyplot as plt
    x = [i for i in range(cutoff)]
    plt.plot(np.array(x), np.array(gru))
    plt.plot(np.array(x), np.array(lstm))
    plt.plot(np.array(x), np.array(birnn))
    plt.legend(['GRU', 'LSTM', 'BiRNN LSTM'], loc='upper right')
    plt.savefig("losses_all.png")
    print("all losses plot saved")
                    from util.heatmap import avg_distance_and_heatmaps
                    avg_distance_and_heatmaps(alphas, sentences,
                                              CONST.SENTENCE_PATH + "hursh/")


if __name__ == "__main__":
    # Set and Overload Arguments
    CONST.parse_argument(argparse.ArgumentParser())

    # Set Time of Experiment
    now = datetime.datetime.now()
    time_stamp = "_".join([
        str(a) for a in [now.month, now.day, now.hour, now.minute, now.second]
    ])

    data = load(CONST.DATA_DIR + CONST.DATA_FILE)
    """
        x_train = data["x_train"]
        x_dev = data["x_dev"]
        x_test = data["x_test"]
        y_train = data["y_train"]
        y_dev = data["y_dev"]
        y_test = data["y_test"]
        l_train = data["l_train"]
        l_dev = data["l_dev"]
        l_test = data["l_test"]
        train_sentences = data["train_sentences"]
        dev_sentences = data["dev_sentences"]
        test_sentences = data["test_sentences"]
        embeddings = data["embeddings"]
        aspects = data["aspects"]
Пример #4
0
def re_evalute_slot3(CONST):

    from util.utils import load_pickle as load
    birnn = load(CONST.DATA_DIR + "BiRNNslot3" + "_predictions")
    evaluate_multiclass(birnn["predictions"], birnn["y"], True)