Пример #1
0
def visualize2(pretrained_model,
               prep_img,
               target_class,
               file_name_to_export="test"):
    # Vanilla backprop
    VBP = VanillaBackprop(pretrained_model)
    # Generate gradients
    vanilla_grads = VBP.generate_gradients(prep_img, target_class)
    # Save colored gradients
    save_gradient_images(vanilla_grads,
                         file_name_to_export + '_Vanilla_BP_color')
    # Convert to grayscale
    grayscale_vanilla_grads = convert_to_grayscale(vanilla_grads)
    # Save grayscale gradients
    save_gradient_images(grayscale_vanilla_grads,
                         file_name_to_export + '_Vanilla_BP_gray')
    print('Vanilla backprop completed')
Пример #2
0
def visualize(pretrained_model,
              prep_img,
              target_class,
              file_name_to_export="test.png"):
    # Guided backprop
    GBP = GuidedBackprop(pretrained_model)
    # Get gradients
    guided_grads = GBP.generate_gradients(prep_img, target_class)
    # Save colored gradients
    save_gradient_images(guided_grads,
                         file_name_to_export + '_Guided_BP_color')
    # Convert to grayscale
    grayscale_guided_grads = convert_to_grayscale(guided_grads)
    # Save grayscale gradients
    save_gradient_images(grayscale_guided_grads,
                         file_name_to_export + '_Guided_BP_gray')
    # Positive and negative saliency maps
    pos_sal, neg_sal = get_positive_negative_saliency(guided_grads)
    save_gradient_images(pos_sal, file_name_to_export + '_pos_sal')
    save_gradient_images(neg_sal, file_name_to_export + '_neg_sal')
    print('Guided backprop completed')
Пример #3
0
    # Average it out
    smooth_grad = smooth_grad / param_n
    return smooth_grad


if __name__ == '__main__':
    # Get params
    target_example = 0  # Snake
    (original_image, prep_img, target_class, file_name_to_export, pretrained_model) = \
        get_example_params(target_example)

    VBP = VanillaBackprop(pretrained_model)
    # GBP = GuidedBackprop(pretrained_model)  # if you want to use GBP dont forget to
    # change the parametre in generate_smooth_grad

    param_n = 50
    param_sigma_multiplier = 4
    smooth_grad = generate_smooth_grad(VBP,  # ^This parameter
                                       prep_img,
                                       target_class,
                                       param_n,
                                       param_sigma_multiplier)

    # Save colored gradients
    save_gradient_images(smooth_grad, file_name_to_export + '_SmoothGrad_color')
    # Convert to grayscale
    grayscale_smooth_grad = convert_to_grayscale(smooth_grad)
    # Save grayscale gradients
    save_gradient_images(grayscale_smooth_grad, file_name_to_export + '_SmoothGrad_gray')
    print('Smooth grad completed')
        model_output = self.model(input_image)
        # Zero grads
        self.model.zero_grad()
        # Target for backprop
        one_hot_output = torch.FloatTensor(1, model_output.size()[-1]).zero_()
        one_hot_output[0][target_class] = 1
        # Backward pass
        model_output.backward(gradient=one_hot_output)
        # Convert Pytorch variable to numpy array
        # [0] to get rid of the first channel (1,3,224,224)
        gradients_as_arr = self.gradients.data.numpy()[0]
        return gradients_as_arr


if __name__ == '__main__':
    # Get params
    target_example = 1  # Snake
    (original_image, prep_img, target_class, file_name_to_export, pretrained_model) = \
        get_example_params(target_example)
    # Vanilla backprop
    VBP = VanillaBackprop(pretrained_model)
    # Generate gradients
    vanilla_grads = VBP.generate_gradients(prep_img, target_class)
    # Save colored gradients
    save_gradient_images(vanilla_grads, file_name_to_export + '_Vanilla_BP_color')
    # Convert to grayscale
    grayscale_vanilla_grads = convert_to_grayscale(vanilla_grads)
    # Save grayscale gradients
    save_gradient_images(grayscale_vanilla_grads, file_name_to_export + '_Vanilla_BP_gray')
    print('Vanilla backprop completed')
Пример #5
0
        # [0] to get rid of the first channel (1,3,224,224)
        gradients_as_arr = self.gradients.data.numpy()[0]
        return gradients_as_arr


if __name__ == '__main__':
    target_example = 0  # Snake
    dataset = ds.ClipArt("assets")
    prep_img, target_class = dataset.__getitem__(0)
    file_name_to_export = "test.png"

    pretrained_model = None

    # Guided backprop
    GBP = GuidedBackprop(pretrained_model)
    # Get gradients
    guided_grads = GBP.generate_gradients(prep_img, target_class)
    # Save colored gradients
    save_gradient_images(guided_grads,
                         file_name_to_export + '_Guided_BP_color')
    # Convert to grayscale
    grayscale_guided_grads = convert_to_grayscale(guided_grads)
    # Save grayscale gradients
    save_gradient_images(grayscale_guided_grads,
                         file_name_to_export + '_Guided_BP_gray')
    # Positive and negative saliency maps
    pos_sal, neg_sal = get_positive_negative_saliency(guided_grads)
    save_gradient_images(pos_sal, file_name_to_export + '_pos_sal')
    save_gradient_images(neg_sal, file_name_to_export + '_neg_sal')
    print('Guided backprop completed')