Пример #1
0
def add_track(neuros, sourcename, targetname, metadata, recording=None):
    if sourcename != None:
        util.copy_file(sourcename, targetname)

    # Create DB entry
    destination = neuros.hostpath_to_neurospath(targetname)
    record = (metadata["title"], None, metadata["artist"], metadata["album"],
              metadata["genre"], recording, metadata["length"],
              metadata["size"] // 1024, destination)
    # Add entry to database
    neuros.db["audio"].add_record(record)
    
    try:
        filename = path.join(*neuros.mountpoint_parts +
                             [neuros.DB_DIR, 'tracks.txt'])
        tracknum_file = file(filename, 'a')
        tracknum = metadata.get('tracknumber', None)
        if tracknum is None:
            tracknum = metadata.get('title', targetname)
            try:
                tracknum.lower()
            except AttributeError:
                pass
        tracknum_file.write('%s\t%s\n' % (destination, tracknum))
        tracknum_file.close()
    except IOError:
        pass  # Fail silently if we can't write the file.
Пример #2
0
def create_profile(auth_info,**kwargs):
    if auth_info['code'] == 1:
        return json.dumps(auth_info)
    username = auth_info['username']
    try:
        data = request.get_json()['params']
	para = eval(str(data["partion"]))
	name = data['profile']
	filename = str(name)
	util.copy_file(filename)
	util.write_file(filename,para)
	util.replace_url(filename,str(data['url']))
	ret = profile_create(app.config['cobbler_url'],app.config['cobbler_user'],app.config['cobbler_password'],filename,str(data['distro']),'/var/lib/cobbler/kickstarts/%s'%filename)
	print "xiaoluoge"
	
	print ret
	if str(ret['result']) == "True": 
	    data = {"distro":str(data['distro']),"os":filename,"ks":'/var/lib/cobbler/kickstarts/%s'%filename} 
	    app.config['cursor'].execute_insert_sql('profile', data)
	    util.write_log('api').info(username, "create cobbler profile %s success"  %filename)
	else:
	    util.write_log('api').info(username, "create cobbler profile %s faile"  %  data['ip'])
        return json.dumps({'code':0,'result':'create %s success' % filename})
    except:
        util.write_log('api').error('create cobbler error:%s' % traceback.format_exc())
        return json.dumps({'code':1,'errmsg': 'create cobbler failed'})
Пример #3
0
def queryDataByImgId(img_id):

    with open('/home/nvidia/Horus/config.cnf') as json_data:
        cnf = json.load(json_data)
        db = create_engine(cnf['db'])

        result = db.execute(
            text('select * from tb_object where img_id = :img_id'),
            {'img_id': img_id})
        data = result.fetchall()

        if len(data) > 0:
            img = ARC_PATH + str(img_id) + '.jpg'

            if os.path.exists(img):
                imgs = DETECT_PATH + str(img_id) + ".jpg"
                util.copy_file(img, imgs)

                for s in data:
                    if len(s[1]) > 0:
                        if os.path.exists(imgs):
                            im = load_image(imgs, 0, 0)
                            drawbox(im, img_id, round(float((s[3]))),
                                    round(float((s[4]))), round(float((s[5]))),
                                    round(float((s[6]))), 3)
Пример #4
0
def convert_music():
    logging.info("convert music....")
    raw_music_dir = os.path.join(config.RAW_RESOURCE_PATH, "common", "music")
    for item in os.listdir(raw_music_dir):
        if item == "." or item == ".." or (not item.endswith(".mp3")):
            continue
        raw_music_path = os.path.join(raw_music_dir, item)
        bin_music_path = os.path.join(config.BIN_RESOURCE_PATH, "music", item)
        util.copy_file(raw_music_path, bin_music_path)
Пример #5
0
def sample_files_from_directory(directory, count):
    images = filter_images_in_path(directory)
    sample_count = min(count, len(images))
    print("Sample Count: {}".format(sample_count))
    sampled_images = random.sample(images, sample_count)
    destination_root = os.path.join(directory, "..")
    sampled_directory = os.path.join(destination_root, "sampled")
    sampled_directory = create_and_return_directory(sampled_directory)
    for image in sampled_images:
        full_path = os.path.join(directory, image)
        copy_file(full_path, sampled_directory)
Пример #6
0
def zip_align(sample_file_name):  # Align the file
    try:
        if enable_logging:
            u.logger('Zip: ' + sample_file_name)
        u.copy_file(sample_file_name, sample_file_name + '_old.apk')
        popen(config.zipalign_path + ' -f 8 ' + sample_file_name + '_old.apk' +
              ' ' + sample_file_name)
        os.remove(sample_file_name + '_old.apk')
    except OSError as ex:
        raise e.OpenToolException(
            str(ex) + '\nUnable to zipalign ' + sample_file_name)
Пример #7
0
def convert_images(node, out):
    imageNodes = node.getElementsByTagName("image")
    image_count = len(imageNodes)
    out.write(struct.pack("B", image_count))
    for imageNode in imageNodes:
        image_file = imageNode.getAttribute("file")
        relative_image_file = image_file[3:]
        key = util.get_path_key(relative_image_file)
        raw_image_path = os.path.join(config.RAW_RESOURCE_PATH, config.TARGET, relative_image_file)

        bin_image_path = os.path.join(config.BIN_RESOURCE_PATH, config.TARGET, str(key))
        util.copy_file(raw_image_path, bin_image_path)
        out.write(struct.pack("I", key))
Пример #8
0
def make_executable_Haskell ():
    if not util.file_exists("solution.hs"):
        raise Exception("solution.hs does not exist")

    util.del_file("work")
    util.del_file("work.hi")
    util.del_file("work.o")
    util.copy_file("solution.hs", "work.hs")
    f = open("work.hs", "a")
    print >>f, """main = do print "OK" """
    f.close()

    util.system("ghc -O3 work.hs")
    if not util.file_exists("work"):
        raise Exception("error in haskell compilation")
    util.del_file("work")
    util.del_file("work.hi")
    util.del_file("work.o")
Пример #9
0
def make_corrects_RunHaskell ():
    for f in glob.glob("*.cor"):
        util.del_file(f)
    inps = sorted(glob.glob("*.inp"))
    for inp in inps:
        tst = os.path.splitext(inp)[0]
        util.copy_file("solution.hs", "work.hs")
        if util.file_exists("judge.hs"):
            os.system("cat judge.hs >> work.hs")
        f = open("work.hs", "a")
        print >>f, "main = do"
        for line in open(tst+".inp").readlines():
            line = line.rstrip()
            if line.startswith("let "):
                print >>f, "    %s" % line
#            elif line.startswith("deb "):
#                print >>f, '    hPutStrLn stderr "%s"' % line
            else:
                print >>f, "    print (%s)" % line
        f.close()
        util.system("runhaskell work.hs >%s.cor" % (tst, ))
Пример #10
0
def perform_blackbox_test(config):
    out_dir = config["out_dir"]
    p4_input = config["p4_input"]
    if out_dir == OUT_DIR:
        out_dir = out_dir.joinpath(p4_input.stem)
    util.check_dir(out_dir)
    util.copy_file(p4_input, out_dir)
    config["out_dir"] = out_dir
    config["p4_input"] = p4_input

    main_formula, pkt_range = get_main_formula(config)
    if main_formula == None or not pkt_range:
        return util.EXIT_FAILURE
    conditions = set()
    # FIXME: Another hack to deal with branch conditions we cannot control
    for child in main_formula.children()[pkt_range]:
        conditions |= get_branch_conditions(child)
    cond_tuple = dissect_conds(config, conditions)
    stf_str = build_test(config, main_formula, cond_tuple, pkt_range)
    # finally, run the test with the stf string we have assembled
    # and return the result of course
    return run_stf_test(config, stf_str)
Пример #11
0
def get_prog_semantics(config):
    p4_input = config["p4_input"]
    out_dir = config["out_dir"]
    py_file = Path(f"{out_dir}/{p4_input.stem}.py")
    fail_dir = out_dir.joinpath("failed")

    result = run_p4_to_py(p4_input, py_file, config)
    if result.returncode != util.EXIT_SUCCESS:
        log.error("Failed to translate P4 to Python.")
        util.check_dir(fail_dir)
        with open(f"{fail_dir}/error.txt", 'w+') as err_file:
            err_file.write(result.stderr.decode("utf-8"))
        util.copy_file([p4_input, py_file], fail_dir)
        return None, result.returncode
    package, result = get_z3_formulization(py_file)
    pipe_val = package.get_pipes()
    if result != util.EXIT_SUCCESS:
        if fail_dir and result != util.EXIT_SKIPPED:
            util.check_dir(fail_dir)
            util.copy_file([p4_input, py_file], fail_dir)
        return pipe_val, result
    return pipe_val, util.EXIT_SUCCESS
Пример #12
0
def diff_files(passes, pass_dir, p4_file):

    p4_name = p4_file.name.stem
    for index, p4_pass in enumerate(passes[1:]):
        pass_before = passes[index - 1]
        pass_after = passes[index]
        diff_dir = f"{pass_dir}/{p4_name}"
        util.check_dir(diff_dir)
        diff_file = f"{diff_dir}/{p4_name}_{p4_pass}.diff"
        diff_cmd = "diff -rupP "
        diff_cmd += "--label=\"before_pass\" --label=\"after_pass\" "
        diff_cmd += f"{pass_before} {pass_after}"
        diff_cmd += f"> {diff_file}"
        log.debug("Creating a diff of the file")
        log.debug("Command: %s", diff_cmd)
        util.exec_process(diff_cmd)
        if os.stat(diff_file).st_size == 0:
            os.remove(diff_file)
        else:
            after_name = f"{diff_dir}/{p4_name}_{p4_pass}{p4_file.suffix}"
            util.copy_file(pass_after, after_name)
            og_name = f"{diff_dir}/{p4_name}_original{p4_file.suffix}"
            util.copy_file(p4_file, og_name)
    return util.EXIT_SUCCESS
Пример #13
0
def main(args):
    """The main process of train.
    :param args: an object of the arguments.
    """
    #================================================================================================
    #                   Check whether the command line arguments are valid or not.
    #================================================================================================
    start_time = time.time()
    # Path to find gnuplot.
    gnuplot_exe_list = [r'"C:\Program Files\gnuplot\pgnuplot.exe"',
                        r'".\gnuplot\bin\pgnuplot.exe"', "/usr/bin/gnuplot","/usr/local/bin/gnuplot"]
    # Get the current path.
    current_path = os.path.dirname(os.path.realpath(__file__))

    # Judge whether the path contains Chinese character or not.
    current_path_uni = unicode(current_path, "gbk")
    if check_contain_chinese(current_path_uni):
        print 'Error: the path can not contain Chinese characters.'
        return False

    file_list = args.files

    # Judge whether binary classification or multiclass classification.
    if len(file_list) == 2:
        bi_or_multi = 0
    elif len(file_list) > 2:
        bi_or_multi = 1
    else:
        print 'The number of input files must be more than 1.'
        return False

    preprocess_result = []
    for i in file_list:
        result = data_preprocess(i, const.TEMP_DIR)
        preprocess_result.append(result)

    if False in preprocess_result:
        print 'There exist some files that do not satisfy the LIBSVM format.'
        return False
    else:
        new_file_list = preprocess_result

    trans_labels(new_file_list)

    if args.v == 'i' and args.i_files is not None:
        for i in args.i_files:
            result = data_preprocess(i, const.TEMP_INDEPENDENT_DIR)
            preprocess_result.append(result)
        if False in preprocess_result:
            print 'There exist some independent test files that do not satisfy the LIBSVM format.'
            return False
        else:
            independent_file_list = preprocess_result


    predict_params = '-q' # optional parameters of svm_predict()

    svm_params = '-h 0 -m 1024 -q'

    # c_result = check_c_g(args.c, 'c')

    # if c_result is False:
    #     return False


    # g_result = check_c_g(args.g, 'g')

    # if g_result is False:
    #     return False

    # if type(c_result) != type(g_result):
    #     print 'Both the arguments c and g should be specified values or both of them are ranges.'
    #     return False

    if args.opt is None or args.opt == '0':
        c_range = xrange(-5, 11, 3)
        g_range = xrange(-10, 6, 3)
    elif args.opt == '1':
        c_range = xrange(-5, 11)
        g_range = xrange(-10, 6)

    if args.b == '1':
        svm_params += (' -b ' + str(args.b))
        predict_params += (' -b ' + str(args.b))
        b = args.b
    elif args.b == '0':
        b = args.b

    if args.p == 'ACC':
        metric = 0
    elif args.p == 'MCC':
        metric = 1
    elif args.p == 'AUC':
        metric = 2
    if args.m is not None:
        model_file_name = args.m
    else:
        print 'Error: the name of the model can not be omitted.'
        print 'A value should be given to the parameter -m.'
        return False

    cpu_core = mul.cpu_count()
    if args.cpu is None:
        process_num = cpu_core
    elif 0 < args.cpu <= cpu_core:
        process_num = args.cpu
    elif args.cpu < 0 or args.cpu > cpu_core:
        process_num = cpu_core
        print 'Warning: The value of -cpu should be larger than 0'
        print 'and less than or equal to the number of cpu core in your computer.'
        print 'The value has been set as the default(number of all cpu cores in your computer).'
        time.sleep(2)

    if args.v == 'i' and args.i_files is None:
        print 'At least one independent dataset file should be included.'
        return False



    #================================================================================================
    #                                     Args check finished here.
    #================================================================================================

    #================================================================================================
    #                                    Parameter selection starts.
    #================================================================================================


    print 'Parameter selection is in processing...\n'

    results = param_selection(new_file_list, metric, svm_params, process_num, c_range, g_range, bi_or_multi)

    print 'Parameter selection completed.\n'

    c = results[0][0]
    g = results[0][1]
    print 'The optimal parameters for the dataset are: C = ', 2 ** c, ' gamma = ', 2 ** g
    print '\n'

    if args.v is None:
        print 'The performance evaluations for the optimal parameter(s) are as follows:\n'
        if bi_or_multi == 0:
            print 'ACC = %.4f' % results[1][1][0]
            print 'MCC = %.4f' % results[1][1][1]
            print 'AUC = %.4f' % results[1][1][2]
            print 'Sn  = %.4f' % results[1][1][3]
            print 'Sp  = %.4f\n' % results[1][1][4]
        elif bi_or_multi == 1:
            print 'ACC = %.4f' % results[1]

    #================================================================================================
    #                                    Parameter selection finished.
    #================================================================================================

    # elif type(c_result) == int:
    #     c = c_result
    #     g = g_result

    c_cost = 2 ** c
    g_gamma = 2 ** g
    svm_params += (' -c ' + str(c_cost) + ' -g ' + str(g_gamma))

    y_all = []
    x_all = []
    for file in new_file_list:
        y, x = svm_read_problem(file)
        y_all.extend(y)
        x_all.extend(x)

    dataset_size = len(x_all)
    pkl_y = current_path + const.TEMP_DIR.lstrip('.') + 'dataset_y.pkl'
    pkl_x = current_path + const.TEMP_DIR.lstrip('.') + 'dataset_x.pkl'
    cPickle.dump(y_all, open(pkl_y, 'wb'))
    cPickle.dump(x_all, open(pkl_x, 'wb'))


    #================================================================================================
    #                                    Model training & cross validation.
    #================================================================================================
    print 'Model training is in processing...'

    final_model_file = current_path + const.FINAL_RESULTS_PATH + model_file_name
    middle_model_file = current_path + const.FINAL_RESULTS_PATH + 'middle.model'

    # jackknife cross validation.
    if args.v =='j':
        cross_validation(y_all, x_all, dataset_size, svm_params, predict_params, bi_or_multi)

    # k-fold cross validation.
    elif args.v is not None and args.v.isdigit() == True and int(args.v) > 1:
        fold = int(args.v)
        cross_validation(y_all, x_all, fold, svm_params, predict_params, bi_or_multi)

    y_all = cPickle.load(open(pkl_y, 'rb'))
    x_all = cPickle.load(open(pkl_x, 'rb'))

    final_model = svm_train(y_all, x_all, svm_params)
    svm_save_model(middle_model_file, final_model)

    #================================================================================================
    #                             Add the parameters to the SVM model file.
    #================================================================================================

    middle_list = []
    with open(middle_model_file) as f:
        for i in f:
            middle_list.append(i)

    param_line = 'c,' + str(c) + ',g,' + str(g) + ',b,' + str(b) + ',bi_or_multi,' + str(bi_or_multi)
    with open(final_model_file, 'w') as f:
        f.write(param_line)
        f.write('\n')
        for i in middle_list:
            f.write(i)

    print 'Model training completed.'
    print 'The model has been saved. You can check it here:'
    if sys.platform.startswith('win'):
        print final_model_file.replace('/', '\\'), '\n'
    else:
        print final_model_file.replace('\\', '/'), '\n'

    if os.path.isfile('cross_validation.png'):
        try:
            os.remove('cross_validation.png')
        except OSError:
            time.sleep(0.1)
            try:
                os.remove('cross_validation.png')
            except OSError:
                pass

    #================================================================================================
    #                                   Independent dataset test.
    #================================================================================================

    if 'independent_file_list' in locals().keys():
        print 'The independent test dataset is found.\n'
        test_y = []
        test_x = []
        for file in independent_file_list:
            y, x = svm_read_problem(file)
            test_y.extend(y)
            test_x.extend(x)
        model = svm_load_model(middle_model_file)
        p_label, p_acc, p_val = svm_predict(test_y, test_x, model, predict_params)
        labels = model.get_labels()
        deci = [labels[0]*val[0] for val in p_val]
        check_gnuplot_exe()
        roc_output = 'independent_roc.png'
        title = 'the test dataset'
        evals = performance(test_y, p_label, deci, roc_output, title, True, bi_or_multi)
        if bi_or_multi == 0:
            dest_file = current_path + const.FINAL_RESULTS_PATH + roc_output
            copy_file(roc_output, dest_file)
            print 'The performance evaluations of the final model are as follows:\n'
            print 'ACC = %.4f' % evals[0]
            print 'MCC = %.4f' % evals[1]
            print 'AUC = %.4f' % evals[2]
            print 'Sn  = %.4f' % evals[3]
            print 'Sp  = %.4f\n' % evals[4]
            print "The ROC curve has been saved. You can check it here: "
            if sys.platform.startswith('win'):
                print dest_file.replace('/', '\\'), '\n'
            else:
                print dest_file.replace('\\', '/'), '\n'

            if os.path.isfile('independent_roc.png'):
                try:
                    os.remove('independent_roc.png')
                except OSError:
                    time.sleep(0.1)
                    try:
                        os.remove('independent_roc.png')
                    except OSError:
                        pass
        elif bi_or_multi == 1:
            print 'The performance evaluations of the final model are as follows:\n'
            print 'ACC = %.4f' % evals
    print '\n'
    print 'Done.'
    print 'Used time: %.2fs' % (time.time() - start_time)
Пример #14
0
    params['test_episodes'] = args.episodes
    params['random_seed'] = seed_generator(params['random_seed'], params['runs'])
    params['start_time'] = start_time

    # Set up directory structure if training
    #if params['mode'] == 'train':
    # Create experiment dir
    params['exp_dir'] = create_dir(
        Path(os.path.join(
            LOG_DIR, 
            params['env_type'], 
            params['env_name'],
            str(time.strftime("%Y-%m-%d_%H-%M")))))
    # Safe experiment parameters to log dir
    copy_file(
        PARAMS_FILE,
        str(Path(os.path.join(params['exp_dir'], args.params))))
    # Add commit version for reproducability
    label = subprocess.check_output(['git', 'rev-parse', 'HEAD']).decode('ascii').strip()
    f = open(os.path.join(params['exp_dir'], 'RL2go_commit-version.txt'), 'w+')
    f.write('{}\r\n'.format(label))
    f.close()
    
    # Prepare the tensorflow configuration settings
    # TODO: Make better suitable for multicore processing
    params['cores'] = 1
    #params['gpus'] = len(get_available_gpus()) if params['use_gpu'] else 0
    params['gpus'] = 1 if params['use_gpu'] else 0
    params['tf_config'] = tf.ConfigProto(
        intra_op_parallelism_threads=params['cores'],
        inter_op_parallelism_threads=params['cores'],
Пример #15
0
def cross_validation(label_list, vector_list, fold, svm_params, predict_params, bi_or_multi):
    """Do cross validation.
    :param label_list: list of labels.
    :param vector_list: list of vectors.
    :param fold: the fold of cross validation.
    """
    datasetsize = len(label_list)
    result = dataset_split_cv(label_list, vector_list, fold)
    if result == False:
        return False
    else:
        split_vector_list, split_label_list = result
    len_vector = len(split_vector_list)
    len_label = len(split_label_list)
    if len_vector != len_label:
        print 'Error: The length of the labels is not equal to that of the vectors.'
        return False
    deci = []
    original_labels = []
    acc_list = []
    mcc_list = []
    auc_list = []
    sn_list = []
    sp_list = []
    if bi_or_multi == 0:
        if fold != datasetsize:
            for i in range(len_vector):
                train_vector_list = []
                train_label_list = []
                #test_vector_list = []
                #test_label_list = []
                test_vector_list = split_vector_list[i]
                test_label_list = split_label_list[i]
                original_labels.extend(test_label_list)
                for j in range(len_vector):
                    if j != i:
                        train_vector_list.extend(split_vector_list[j])
                        train_label_list.extend(split_label_list[j])
                m = svm_train(train_label_list, train_vector_list, svm_params)
                p_label, p_acc, p_val = svm_predict(test_label_list, test_vector_list, m, predict_params)
                labels = m.get_labels()
                subdeci = [labels[0]*val[0] for val in p_val]
                deci += subdeci
                evals = performance(test_label_list, p_label, subdeci, bi_or_multi=bi_or_multi)
                acc_list.append(evals[0])
                mcc_list.append(evals[1])
                auc_list.append(evals[2])
                sn_list.append(evals[3])
                sp_list.append(evals[4])
            acc_average = sum(acc_list) / len(acc_list)
            mcc_average = sum(mcc_list) / len(mcc_list)
            auc_average = sum(auc_list) / len(auc_list)
            sn_average = sum(sn_list) / len(sn_list)
            sp_average = sum(sp_list) / len(sp_list)

            label_all = []
            for i in split_label_list:
                label_all.extend(i)
            check_gnuplot_exe()
            roc_output = 'cross_validation.png'
            title = 'cross validation'
            current_path = os.path.dirname(os.path.realpath(__file__))
            roc_data_file = current_path + const.GEN_FILE_PATH + 'roc_data'
            plot_roc(deci, label_all, roc_output, title, True, roc_data_file)
            del_file(roc_data_file)
            dest_file = current_path + const.FINAL_RESULTS_PATH + roc_output
            copy_file(roc_output, dest_file)
        elif fold == datasetsize:
            predicted_labels = []
            #deci_list = []
            for i in range(len_vector):
                train_vector_list = []
                train_label_list = []
                #test_vector_list = []
                #test_label_list = []
                test_vector_list = split_vector_list[i]
                test_label_list = split_label_list[i]
                original_labels.extend(test_label_list)
                for j in range(len_vector):
                    if j != i:
                        train_vector_list.extend(split_vector_list[j])
                        train_label_list.extend(split_label_list[j])
                m = svm_train(train_label_list, train_vector_list, svm_params)
                p_label, p_acc, p_val = svm_predict(test_label_list, test_vector_list, m, predict_params)
                labels = m.get_labels()
                subdeci = [labels[0]*val[0] for val in p_val]
                deci += subdeci
                predicted_labels.extend(p_label)
            evals = performance(original_labels, predicted_labels, deci, bi_or_multi=bi_or_multi)
            acc_average = evals[0]
            mcc_average = evals[1]
            auc_average = evals[2]
            sn_average = evals[3]
            sp_average = evals[4]

            label_all = []
            for i in split_label_list:
                label_all.extend(i)
            check_gnuplot_exe()
            roc_output = 'cross_validation.png'
            title = 'cross validation'
            current_path = os.path.dirname(os.path.realpath(__file__))
            roc_data_file = current_path + const.GEN_FILE_PATH + 'roc_data'
            plot_roc(deci, label_all, roc_output, title, True, roc_data_file)
            del_file(roc_data_file)
            dest_file = current_path + const.FINAL_RESULTS_PATH + roc_output
            copy_file(roc_output, dest_file)

        #print acc_list
        acc_re = 'ACC = %.4f' % acc_average
        mcc_re = 'MCC = %.4f' % mcc_average
        auc_re = 'AUC = %.4f' % auc_average
        sn_re = 'Sn  = %.4f' % sn_average
        sp_re = 'Sp  = %.4f\n' % sp_average
        eval_re = [acc_re, mcc_re, auc_re, sn_re, sp_re]
        print ('The cross validation results are as follows:')
        print acc_re
        print mcc_re
        print auc_re
        print sn_re
        print sp_re
        print "The ROC curve has been saved. You can check it here: "
        if sys.platform.startswith('win'):
            print dest_file.replace('/', '\\'), '\n'
        else:
            print dest_file.replace('\\', '/'), '\n'
        result_file = current_path + const.FINAL_RESULTS_PATH + "cv_eval_results.txt"
        with open(result_file, 'w') as f:
            f.write('The cross validation results are as follows:\n')
            for i in eval_re:
                f.write(i)
                f.write("\n")
        prob_file = current_path + const.FINAL_RESULTS_PATH + "probability_values.txt"
        with open(prob_file, 'w') as f:
            for i, j in zip(original_labels, deci):
                f.write(str(i))
                f.write('\t')
                f.write(str(j))
                f.write("\n")

    elif bi_or_multi == 1:
        if fold != datasetsize:
            for i in range(len_vector):
                train_vector_list = []
                train_label_list = []
                #test_vector_list = []
                #test_label_list = []
                test_vector_list = split_vector_list[i]
                test_label_list = split_label_list[i]
                for j in range(len_vector):
                    if j != i:
                        train_vector_list.extend(split_vector_list[j])
                        train_label_list.extend(split_label_list[j])
                m = svm_train(train_label_list, train_vector_list, svm_params)
                p_label, p_acc, p_val = svm_predict(test_label_list, test_vector_list, m, predict_params)
                labels = m.get_labels()
                subdeci = [labels[0]*val[0] for val in p_val]
                deci += subdeci
                evals = performance(test_label_list, p_label, subdeci, bi_or_multi=bi_or_multi)
                acc_list.append(evals)
            acc_average = sum(acc_list) / len(acc_list)
        elif fold == datasetsize:
            predicted_labels = []
            original_labels = []
            for i in range(len_vector):
                train_vector_list = []
                train_label_list = []
                #test_vector_list = []
                #test_label_list = []
                test_vector_list = split_vector_list[i]
                test_label_list = split_label_list[i]
                original_labels.extend(test_label_list)
                for j in range(len_vector):
                    if j != i:
                        train_vector_list.extend(split_vector_list[j])
                        train_label_list.extend(split_label_list[j])
                m = svm_train(train_label_list, train_vector_list, svm_params)
                p_label, p_acc, p_val = svm_predict(test_label_list, test_vector_list, m, predict_params)
                labels = m.get_labels()
                subdeci = [labels[0]*val[0] for val in p_val]
                deci += subdeci
                predicted_labels.extend(p_label)
            evals = performance(original_labels, predicted_labels, deci, bi_or_multi=bi_or_multi)
            acc_average = evals
        print ('The cross validation results are as follows:')
        print 'ACC = %.4f' % acc_average


#def cv_jackknife(label_list, vector_list, fold, svm_params, predict_params, bi_or_multi):
    """Do jackknife cross validation.
Пример #16
0
 def copy_runway(self, template):
     """Copy runway template to proper directory."""
     template_file = os.path.join(self.fixtures_dir,
                                  'runway-{}.yml'.format(template))
     copy_file(template_file,
               os.path.join(self.sources_test_dir, 'runway.yml'))
Пример #17
0
def test_copy_file():
    ret = util.copy_file('a.txt', 'a1.txt')
    return 'copy OK: ' + str(ret)
Пример #18
0
    [
        os.path.join(util.get_script_path(), "data", args.ide,
                     "vmoptions.README"),
        os.path.join(util.get_script_path(), "tmp", "root", "etc", args.ide,
                     "%s.vmoptions.README" % args.ide)
    ],
    [
        os.path.join(util.get_script_path(), "data", args.ide, "debian",
                     "sysctl-99.conf"),
        os.path.join(util.get_script_path(), "tmp", "root", "etc", "sysctl.d",
                     "99-%s.conf" % args.ide)
    ],
]

for copyTuple in copyList:
    if not util.copy_file(copyTuple[0], copyTuple[1], logger):
        cleanup(-1, logger)

# Fixing vmoptions file(s)
file1 = open(
    os.path.join(util.get_script_path(), "tmp", "root", "etc", args.ide,
                 "%s.vmoptions.README" % args.ide), "a")
file2 = open(
    os.path.join(util.get_script_path(), "tmp", "root", "usr", "share",
                 "jetbrains", args.ide, "bin", "%s.vmoptions" % args.ide), "r")
file3 = open(
    os.path.join(util.get_script_path(), "tmp", "root", "usr", "share",
                 "jetbrains", args.ide, "bin", "%s.vmoptions2" % args.ide),
    "w")
file1.write("\nOriginal pycharm.vmoptions:\n")
for line in file2:
Пример #19
0
def run_tofino_test(out_dir, p4_input, stf_file_name):
    # we need to change the working directory
    # tofino scripts make some assumptions where to dump files
    prog_name = p4_input.stem
    # we need to create a specific test dir in which we can run tests
    test_dir = out_dir.joinpath("test_dir")
    util.check_dir(test_dir)
    util.copy_file(stf_file_name, test_dir)
    template_name = test_dir.joinpath(f"{prog_name}.py")
    # use a test template that runs stf tests
    util.copy_file(f"{FILE_DIR}/tofino_test_template.py", template_name)

    # initialize the target install
    log.info("Building the tofino target...")
    config_cmd = f"{TOFINO_DIR}/pkgsrc/p4-build/configure "
    config_cmd += "--with-tofino --with-p4c=bf-p4c "
    config_cmd += f"--prefix={TOFINO_DIR}/install "
    config_cmd += f"--bindir={TOFINO_DIR}/install/bin "
    config_cmd += f"P4_NAME={prog_name} "
    config_cmd += f"P4_PATH={p4_input.resolve()} "
    config_cmd += "P4_VERSION=p4-16 "
    config_cmd += "P4_ARCHITECTURE=tna "
    result = util.exec_process(config_cmd, cwd=out_dir)
    if result.returncode != util.EXIT_SUCCESS:
        return result, result.stdout, result.stderr
    # create the target
    make_cmd = f"make -C {out_dir} "
    result = util.exec_process(make_cmd)
    if result.returncode != util.EXIT_SUCCESS:
        return result, result.stdout, result.stderr
    # install the target in the tofino folder
    make_cmd = f"make install -C {out_dir} "
    result = util.exec_process(make_cmd)
    if result.returncode != util.EXIT_SUCCESS:
        return result, result.stdout, result.stderr
    procs = []
    test_proc = None
    # start the target in the background
    log.info("Starting the tofino model...")
    os_env = os.environ.copy()
    os_env["SDE"] = f"{TOFINO_DIR}"
    os_env["SDE_INSTALL"] = f"{TOFINO_DIR}/install"

    model_cmd = f"{TOFINO_DIR}/run_tofino_model.sh "
    model_cmd += f"-p {prog_name} "
    proc = util.start_process(model_cmd,
                              preexec_fn=os.setsid,
                              env=os_env,
                              cwd=out_dir)
    procs.append(proc)
    # start the binary for the target in the background
    log.info("Launching switchd...")
    os_env = os.environ.copy()
    os_env["SDE"] = f"{TOFINO_DIR}"
    os_env["SDE_INSTALL"] = f"{TOFINO_DIR}/install"

    switch_cmd = f"{TOFINO_DIR}/run_switchd.sh "
    switch_cmd += "--arch tofino "
    switch_cmd += f"-p {prog_name} "
    proc = util.start_process(switch_cmd,
                              preexec_fn=os.setsid,
                              env=os_env,
                              cwd=out_dir)
    procs.append(proc)

    # wait for a bit
    time.sleep(2)
    # finally we can run the test
    log.info("Running the actual test...")
    test_cmd = f"{TOFINO_DIR}/run_p4_tests.sh "
    test_cmd += f"-t {test_dir} "
    os_env = os.environ.copy()
    os_env["SDE"] = f"{TOFINO_DIR}"
    os_env["SDE_INSTALL"] = f"{TOFINO_DIR}/install"
    # inserting this path is necessary for the tofino_test_template.py
    os_env["PYTHONPATH"] = f"${{PYTHONPATH}}:{ROOT_DIR}"
    test_proc = util.start_process(test_cmd, env=os_env, cwd=out_dir)

    def signal_handler(sig, frame):
        log.warning("run_tofino_test: Caught Interrupt, exiting...")
        cleanup(procs)
        os.kill(test_proc.pid, signal.SIGINT)
        os.kill(test_proc.pid, signal.SIGTERM)
        sys.exit(1)

    signal.signal(signal.SIGINT, signal_handler)
    signal.signal(signal.SIGTERM, signal_handler)

    stdout, stderr = test_proc.communicate()
    cleanup(procs)
    return test_proc, stdout, stderr
Пример #20
0
 def setup_greasemonkey(self):
   path_gm = os.path.join(self.profiledir, 'gm_scripts')
   os.mkdir(path_gm)
   util.copy_file(os.path.join(self.browserdir, 'gm_config.xml'), os.path.join(path_gm, 'config.xml'))
   util.copy_file(os.path.join(self.distdir, 'pixplus.user.js'), path_gm)
   self.user_prefs['extensions.greasemonkey.stats.prompted'] = 'true'
Пример #21
0
 def setup_scriptish(self):
   path_st = os.path.join(self.profiledir, 'scriptish_scripts')
   os.mkdir(path_st)
   util.copy_file(os.path.join(self.browserdir, 'scriptish-config.json'), path_st)
   util.copy_file(os.path.join(self.distdir, 'pixplus.user.js'), path_st)
   os.utime(os.path.join(path_st, 'pixplus.user.js'), (2000000000, 2000000000))
Пример #22
0
 def copy_runway(self, template):
     """Copy runway template to proper directory."""
     template_file = os.path.join(self.template_dir,
                                  'runway-{}.yml'.format(template))
     copy_file(template_file, os.path.join(self.base_dir, 'runway.yml'))
Пример #23
0
 def copy_template(self, template, name='main.tf'):
     """Copy template to Terraform module folder."""
     template_file = os.path.join(self.template_dir, template)
     copy_file(template_file, os.path.join(self.tf_test_dir, name))
Пример #24
0
# Paths that contain templates, relative to this directory.
templates_path = ['html']

# The suffix of source filenames.
source_suffix = '.rst'

# The encoding of source files.
#source_encoding = 'utf-8'

# The master toctree document.
#master_doc = 'index'

# create content template for the homepage
from util import rst2html, copy_file
readme = rst2html('../README.txt', 'html/intro.html')
readme = copy_file('../CHANGES.txt', 'changelog.rst')

# Location of the PyAMF source root folder.
import pyamf

# General substitutions.
project = 'PyAMF'
url = 'http://pyamf.org'
description = 'AMF for Python'
copyright = "Copyright &#169; 2007-%s The <a href='%s'>%s</a> Project. All rights reserved." % (
            time.strftime('%Y'), url, project)

# We look for the __init__.py file in the current PyAMF source tree
# and replace the values accordingly.
#
# The full version, including alpha/beta/rc tags.
Пример #25
0
def main(args):
    """The main process of predict.
    :param args: an object of the arguments.
    """
    start_time = time.time()

    current_path = os.path.dirname(os.path.realpath(__file__))

    #Judge whether the path contains Chinese character or not
    current_path_uni = unicode(current_path, "gbk")
    if check_contain_chinese(current_path_uni):
        print 'Error: the path can not contain Chinese character.'
        return False

    #================================================================================================
    #                                      Inputfile preprocess.
    #================================================================================================

    inputfile = args.inputfile

    result = data_preprocess(inputfile, const.TEMP_DIR)
    if result == False:
        print 'The input file does not satisfy the LIBSVM format.'
        return False
    else:
        new_inputfile = result


    if args.m == None:
        print 'Error: the name of the model can not be omitted.'
        print 'A value should be given to the parameter -m.'
        return False
    else:
        model_name = args.m
    model_file = current_path + const.FINAL_RESULTS_PATH + model_name

    if args.o == None:
        output_name = 'output_labels.txt'
    else:
        output_name = args.o
    output = current_path + const.FINAL_RESULTS_PATH + output_name


    #================================================================================================
    #                   Processing the model file generated in the train step.
    #================================================================================================

    param_dict = dict()
    model_list = []
    with open(model_file) as f:
        train_params = f.readline().strip()
        for line in f:
            model_list.append(line)

    svm_model_file = current_path + const.FINAL_RESULTS_PATH + 'svm_model.model'
    with open(svm_model_file, 'w') as f:
        for i in model_list:
            f.write(i)

    param_list = train_params.split(',')
    for index in range(0, len(param_list), 2):
        param_dict[param_list[index]] = param_list[index+1]

    if 'c' in param_dict.keys() and 'g' in param_dict.keys() and 'b' in param_dict.keys() and 'bi_or_multi' in param_dict.keys():
        c = int(param_dict['c'])
        g = int(param_dict['g'])
        b = param_dict['b']
        bi_or_multi = int(param_dict['bi_or_multi'])

    print 'The parameters of RBF kernel:'
    print 'c = ', c, ' g = ', g


    #================================================================================================
    #                                       Predicting process.
    #================================================================================================

    label_list = []
    if args.labels !=None:
        with open(args.labels) as f:
            for i in f:
                if i.strip() == '+1':
                    label_list.append(1.0)
                elif i.strip() == '-1':
                    label_list.append(-1.0)
                else:
                    label_list.append(int(i.strip()))

    predict_params = '-q'
    if b == '1':
        predict_params += (' -b ' + b)

    y ,x = svm_read_problem(new_inputfile)
    #print y
    model = svm_load_model(svm_model_file)
    model_labels = model.get_labels()
    p_label, p_acc, p_val = svm_predict(y, x, model, predict_params)
    #print p_label
    if bi_or_multi == 0:
        with open(output, 'w') as f:
            for i in p_label:
                if i == 1.0:
                    f.write('+1')
                if i == -1.0:
                    f.write('-1')
                f.write('\n')
        if len(label_list) != 0:
            check_gnuplot_exe()
            deci = [model_labels[0]*val[0] for val in p_val]
            roc_output = 'predicted_roc.png'
            title = 'the predicted dataset'
            #print '1'
            evals = performance(label_list, p_label, deci, roc_output, title, True, bi_or_multi)
            dest_file = current_path + const.FINAL_RESULTS_PATH + roc_output
            copy_file(roc_output, dest_file)
            print 'The performance evaluations are as follows:\n'
            print 'ACC = %.4f' % evals[0]
            print 'MCC = %.4f' % evals[1]
            print 'AUC = %.4f' % evals[2]
            print 'Sn  = %.4f' % evals[3]
            print 'Sp  = %.4f\n' % evals[4]
            if evals[2] !=0:
                print "The ROC curve has been saved. You can check it here: "
                if sys.platform.startswith('win'):
                    print dest_file.replace('/', '\\'), '\n'
                else:
                    print dest_file.replace('\\', '/'), '\n'

        if os.path.isfile('predicted_roc.png'):
            try:
                os.remove('predicted_roc.png')
            except OSError:
                time.sleep(0.1)
                try:
                    os.remove('predicted_roc.png')
                except OSError:
                    pass

    elif bi_or_multi == 1:
        with open(output, 'w') as f:
            for i in p_label:
                f.write(str(i))
                f.write('\n')
        if len(label_list) != 0:
            deci = [model_labels[0]*val[0] for val in p_val]
            roc_output = 'predicted_roc.png'
            title = 'the predicted dataset'
            #print '1'
            evals = performance(label_list, p_label, deci, roc_output, title, True, bi_or_multi)
            print 'The performance evaluation is as follow:\n'
            print 'ACC = %.4f' % evals

    print "The predicted labels have been saved. You can check it here: "
    if sys.platform.startswith('win'):
        print output.replace('/', '\\'), '\n'
    else:
        print output.replace('\\', '/'), '\n'


    print("Done.")
    print("Used time: %.2fs" % (time.time() - start_time))
Пример #26
0
def test_delete():
    util.copy_file('a.txt', 'a.txt.bak')
    util.copy_dir('d1', 'd1_bak')
    util.delete('a.txt')
    util.delete('d1', force=True)
    return 'delete OK'
Пример #27
0
def test_delete_file():
    util.copy_file('a.txt', 'a.txt.bak')
    util.delete_file('a.txt')
    return 'delete OK'
Пример #28
0
def convert_font():
    logging.info("convert font....")
    raw_font_path = os.path.join(config.RAW_RESOURCE_PATH, "common", "font", "font")
    bin_font_path = os.path.join(config.BIN_RESOURCE_PATH, "font")
    util.copy_file(raw_font_path, bin_font_path)
Пример #29
0
        else:
            if len(filelist) == 1:
                print "Copying 1 new recording to host."
            else:
                print "Copying %d new recordings to host." \
                      % (len(new_recordings),)

            i = 1
            for neuros_trackname in new_recordings:
                sourcename = neuros.neurospath_to_hostpath(neuros_trackname)
                basename = path.basename(sourcename)
                targetname = path.join(config.recordingdir, basename)

                print "    %d. %s..." % (i, basename)
                i += 1
                util.copy_file(sourcename, targetname)
                config.add_recording(neuros_trackname.lower())

    # Only pack when necessary
    if audio_db.count_deleted() > 0:
        print "  Packing audio database...",
        audio_db.pack()
        print " Done."

    if config.sort_database:
        audio_db.sort(path.join(*neuros.mountpoint_parts +
                                [neuros.DB_DIR, 'tracks.txt']))
        
    neuros.close_db("audio")
    
Пример #30
0
    cleanup(-1, logger)

# Copy Files
copyList = [[os.path.join(util.get_script_path(), "data", args.ide, "start.sh"),
             os.path.join(util.get_script_path(), "tmp", "root", "usr", "bin", args.ide)],
            [os.path.join(util.get_script_path(), "data", args.ide, "icon.desktop"),
             os.path.join(util.get_script_path(), "tmp", "root", "usr", "share",
                          "applications", "%s.desktop" % args.ide)],
            [os.path.join(util.get_script_path(), "data", args.ide, "vmoptions.README"),
             os.path.join(util.get_script_path(), "tmp", "root", "etc", args.ide, "%s.vmoptions.README" % args.ide)],
            [os.path.join(util.get_script_path(), "data", args.ide, "debian", "sysctl-99.conf"),
             os.path.join(util.get_script_path(), "tmp", "root", "etc", "sysctl.d", "99-%s.conf" % args.ide)],
            ]

for copyTuple in copyList:
    if not util.copy_file(copyTuple[0], copyTuple[1], logger):
        cleanup(-1, logger)

# Fixing vmoptions file(s)
file1 = open(os.path.join(util.get_script_path(), "tmp",
                          "root", "etc", args.ide, "%s.vmoptions.README" % args.ide), "a")
file2 = open(os.path.join(util.get_script_path(), "tmp",
                          "root", "usr", "share", "jetbrains", args.ide, "bin", "%s.vmoptions" % args.ide), "r")
file3 = open(os.path.join(util.get_script_path(), "tmp",
                          "root", "usr", "share", "jetbrains", args.ide, "bin", "%s.vmoptions2" % args.ide), "w")
file1.write("\nOriginal pycharm.vmoptions:\n")
for line in file2:
    file1.write(line)
    if "yjpagent" not in line:
        file3.write(line)
file1.close()
Пример #31
0
def main():
    torch.multiprocessing.set_sharing_strategy('file_system')
    print('[RUN] parse arguments')
    args, framework, optimizer, data_loader_dict, tester_dict = option.parse_options()

    print('[RUN] create result directories')
    result_dir_dict = util.create_result_dir(args.result_dir, ['src', 'log', 'snapshot', 'test'])
    util.copy_file(args.bash_file, args.result_dir)
    util.copy_dir('./src', result_dir_dict['src'])

    print('[RUN] create loggers')
    train_log_dir = os.path.join(result_dir_dict['log'], 'train')
    train_logger = SummaryWriter(train_log_dir)

    print('[OPTIMIZER] learning rate:', optimizer.param_groups[0]['lr'])
    n_batches = data_loader_dict['train'].__len__()
    global_step = args.training_args['init_iter']

    print('')
    skip_flag = False
    while True:
        start_time = time.time()
        for train_data_dict in data_loader_dict['train']:
            batch_time = time.time() - start_time

            if skip_flag:
                skip_flag = False
            else:
                if global_step in args.snapshot_iters:
                    snapshot_dir = os.path.join(result_dir_dict['snapshot'], '%07d' % global_step)
                    util.save_snapshot(framework.network, optimizer, snapshot_dir)

                if global_step in args.test_iters:
                    test_dir = os.path.join(result_dir_dict['test'], '%07d' % global_step)
                    util.run_testers(tester_dict, framework, data_loader_dict['test'], test_dir)

                if args.training_args['max_iter'] <= global_step:
                    break

                if global_step in args.training_args['lr_decay_schd'].keys():
                    util.update_learning_rate(optimizer, args.training_args['lr_decay_schd'][global_step])

            train_loss_dict, train_time = \
                train_network_one_step(args, framework, optimizer, train_data_dict, global_step)

            if train_loss_dict is None:
                skip_flag = True
                train_data_dict.clear()
                del train_data_dict

            else:
                if global_step % args.training_args['print_intv'] == 0:
                    iter_str = '[TRAINING] %d/%d:' % (global_step, args.training_args['max_iter'])
                    info_str = 'n_batches: %d, batch_time: %0.3f, train_time: %0.3f' % \
                               (n_batches, batch_time, train_time)
                    train_str = util.cvt_dict2str(train_loss_dict)
                    print(iter_str + '\n- ' + info_str + '\n- ' + train_str + '\n')

                    for key, value in train_loss_dict.items():
                        train_logger.add_scalar(key, value, global_step)

                train_loss_dict.clear()
                train_data_dict.clear()
                del train_loss_dict, train_data_dict
                global_step += 1

            start_time = time.time()
        if args.training_args['max_iter'] <= global_step:
            break
    train_logger.close()
Пример #32
0
def cross_validation(label_list, vector_list, fold, svm_params, predict_params,
                     bi_or_multi):
    """Do cross validation.
    :param label_list: list of labels.
    :param vector_list: list of vectors.
    :param fold: the fold of cross validation.
    """
    result = dataset_split_cv(label_list, vector_list, fold)
    if result == False:
        return False
    else:
        split_vector_list, split_label_list = result
    len_vector = len(split_vector_list)
    len_label = len(split_label_list)
    if len_vector != len_label:
        print 'Error: The length of the labels is not equal to that of the vectors.'
        return False
    deci = []
    acc_list = []
    mcc_list = []
    auc_list = []
    sn_list = []
    sp_list = []
    if bi_or_multi == 0:
        for i in range(len_vector):
            train_vector_list = []
            train_label_list = []
            #test_vector_list = []
            #test_label_list = []
            test_vector_list = split_vector_list[i]
            test_label_list = split_label_list[i]
            for j in range(len_vector):
                if j != i:
                    train_vector_list.extend(split_vector_list[j])
                    train_label_list.extend(split_label_list[j])
            m = svm_train(train_label_list, train_vector_list, svm_params)
            p_label, p_acc, p_val = svm_predict(test_label_list,
                                                test_vector_list, m,
                                                predict_params)
            labels = m.get_labels()
            subdeci = [labels[0] * val[0] for val in p_val]
            deci += subdeci
            evals = performance(test_label_list,
                                p_label,
                                subdeci,
                                bi_or_multi=bi_or_multi)
            acc_list.append(evals[0])
            mcc_list.append(evals[1])
            auc_list.append(evals[2])
            sn_list.append(evals[3])
            sp_list.append(evals[4])
        acc_average = sum(acc_list) / len(acc_list)
        mcc_average = sum(mcc_list) / len(mcc_list)
        auc_average = sum(auc_list) / len(auc_list)
        sn_average = sum(sn_list) / len(sn_list)
        sp_average = sum(sp_list) / len(sp_list)

        label_all = []
        for i in split_label_list:
            label_all.extend(i)
        check_gnuplot_exe()
        roc_output = 'cross_validation.png'
        title = 'cross validation'
        current_path = os.path.dirname(os.path.realpath(__file__))
        roc_data_file = current_path + const.GEN_FILE_PATH + 'roc_data'
        plot_roc(deci, label_all, roc_output, title, True, roc_data_file)
        del_file(roc_data_file)
        dest_file = current_path + const.FINAL_RESULTS_PATH + roc_output
        copy_file(roc_output, dest_file)
        print('The cross validation results are as follows:')
        print 'ACC = %.4f' % acc_average
        print 'MCC = %.4f' % mcc_average
        print 'AUC = %.4f' % auc_average
        print 'Sn  = %.4f' % sn_average
        print 'Sp  = %.4f\n' % sp_average
        print "The ROC curve has been saved. You can check it here: "
        if sys.platform.startswith('win'):
            print dest_file.replace('/', '\\'), '\n'
        else:
            print dest_file.replace('\\', '/'), '\n'
    elif bi_or_multi == 1:
        for i in range(len_vector):
            train_vector_list = []
            train_label_list = []
            #test_vector_list = []
            #test_label_list = []
            test_vector_list = split_vector_list[i]
            test_label_list = split_label_list[i]
            for j in range(len_vector):
                if j != i:
                    train_vector_list.extend(split_vector_list[j])
                    train_label_list.extend(split_label_list[j])
            m = svm_train(train_label_list, train_vector_list, svm_params)
            p_label, p_acc, p_val = svm_predict(test_label_list,
                                                test_vector_list, m,
                                                predict_params)
            labels = m.get_labels()
            subdeci = [labels[0] * val[0] for val in p_val]
            deci += subdeci
            evals = performance(test_label_list,
                                p_label,
                                subdeci,
                                bi_or_multi=bi_or_multi)
            acc_list.append(evals)
        acc_average = sum(acc_list) / len(acc_list)
        print('The cross validation results are as follows:')
        print 'ACC = %.4f' % acc_average