Пример #1
0
 def __init__(self,
              df,
              img_path='/home/rliu/TDD-Net/data/',
              window_size=50,
              pad_size=50,
              mask=create_circular_mask(224, 224),
              transforms=None):
     """
     Args:
         df: dataframes of training data
         transform: pytorch transforms for transforms and tensor conversion
     """
     self.data = df
     self.img_path = img_path
     self.transforms = transforms
     self.window_size = window_size
     self.pad_size = pad_size
     self.mask = mask
Пример #2
0
 def __init__(
         self,
         csv_path='/home/rliu/yolo2/v2_pytorch_yolo2/data/an_data/VOCdevkit/VOC2007/csv_labels/train.csv',
         img_path='/home/rliu/TDD-Net/data/',
         window_size=50,
         pad_size=50,
         mask=create_circular_mask(224, 224),
         transforms=None):
     """
     Args:
         csv_path (string): path to csv file
         transform: pytorch transforms for transforms and tensor conversion
     """
     self.data = pd.read_csv(csv_path, sep=" ")
     self.img_path = img_path
     self.transforms = transforms
     self.window_size = window_size
     self.pad_size = pad_size
     self.mask = mask
Пример #3
0
 def __init__(self,
              image_index=6501,
              img_path='/home/rliu/TDD-Net/data/',
              window_size=45,
              mask=create_circular_mask(224, 224),
              stride=2,
              transforms=None):
     """
     Args:
         image_index: index of image being processed
         window_size: size of sliding window
         transform: pytorch transforms for transforms and tensor conversion
     """
     self.image = Image.open(img_path +
                             '%06.0f.jpg' % image_index).convert('L')
     coord_list = np.empty([0, 2], dtype=int)
     for i in np.arange(0, self.image.size[0], stride):
         for j in np.arange(0, self.image.size[1], stride):
             coord_list = np.append(coord_list, [[i, j]], axis=0)
     self.coords = coord_list
     self.mask = mask
     self.window_size = window_size
     self.transforms = transforms