Пример #1
0
def fit_time(measure_type, occtime, season=None):
    conn = uo.connect('interval_ion')
    with conn:
        df_bs = pd.read_sql('SELECT * FROM {0}_id_station'.format(measure_type), conn)
        df_area = pd.read_sql('SELECT * FROM area', conn)
        df_tz = pd.read_sql('SELECT Building_Number, rawOffset FROM EUAS_timezone', conn)
    df_tz.set_index('Building_Number', inplace=True)
    df_area.set_index('Building_Number', inplace=True)
    bs_pair = zip(df_bs['Building_Number'], df_bs['ICAO'])
    sns.set_style("whitegrid")
    sns.set_context("talk", font_scale=1)
    value_lb_dict = {'electric': 'Electric_(KWH)', 'gas':
                     'Gas_(CubicFeet)'}
    multiplier_dict = {'electric':  3.412, 'gas': 1.026}
    col = value_lb_dict[measure_type]
    m = multiplier_dict[measure_type]
    ylabel = {'electric': 'electric (kBtu/sq.ft)', 'gas': 'gas kBtu/sq.ft'}
    print len(bs_pair)
    sns.set_style("whitegrid")
    # palette = sns.cubehelix_palette(len(bs_pair))
    palette = sns.color_palette('husl', len(bs_pair))
    sns.set_palette(palette)
    colors_rgb = [util.float2hex(x) for x in palette]
    sns.set_context("talk", font_scale=1)
    jsondir = os.getcwd() + '/input/FY/interval/ion_0627/piecewise_all/json_{0}/'.format(occtime)
    # csvdir = os.getcwd() + '/input/FY/interval/ion_0627/piecewise_all/csv/'
    for i, (b, s) in enumerate(bs_pair):
        print b, s
        try:
            area = df_area.ix[b, 'Gross_Sq.Ft']
        except KeyError:
            print 'No area found'
            continue
        offset = df_tz.loc[b, 'rawOffset']
        df = join_interval(offset, b, s, area, col, m, measure_type, conn, season=season)
        df.to_csv(homedir + 'temp/{0}.csv'.format(b))
        df = df[df[col] >= 0]
        points = df[col]
        outliers = show_outlier(points, b, 'upper', measure_type, 1.5)
        df['outlier'] = outliers
        df = df[~np.array(outliers)]
        df['status_week_day_night'] = \
            df.apply(lambda r: util.get_status(r['hour'], r['day']), axis=1)
        min_time = df['Timestamp'].min()
        max_time = df['Timestamp'].max()
        gr = df.groupby('status_week_day_night')
        bx = plt.axes()
        d0 = plot_piece(gr, bx, occtime, colors_rgb[i], measure_type, b, s, scatter=False, annote=True, jsondir=jsondir, season=season)
    plt.xlabel('Temperature_F')
    # plt.show()
    if season is None:
        path = os.getcwd() + '/input/FY/interval/ion_0627/piecewise_all/{0}_{1}.png'.format(measure_type, occtime)
    else:
        path = os.getcwd() + '/input/FY/interval/ion_0627/piecewise_all/{0}_{1}_{2}.png'.format(measure_type, occtime, season)
    P.savefig(path, dpi = my_dpi, figsize = (2000/my_dpi, 500/my_dpi), bbox_inches='tight')
    shutil.copy(path, path.replace('input/FY/interval/ion_0627/piecewise_all', 'plot_FY_weather/html/interval/lean/all'))
    plt.close()
    return
Пример #2
0
def fit_time(measure_type, occtime):
    conn = uo.connect('interval_ion')
    with conn:
        df_bs = pd.read_sql('SELECT * FROM {0}_id_station'.format(measure_type), conn)
        df_area = pd.read_sql('SELECT * FROM area', conn)
    df_area.set_index('Building_Number', inplace=True)
    bs_pair = zip(df_bs['Building_Number'], df_bs['ICAO'])
    sns.set_style("whitegrid")
    sns.set_context("talk", font_scale=1)
    value_lb_dict = {'electric': 'Electric_(KWH)', 'gas':
                     'Gas_(CubicFeet)'}
    multiplier_dict = {'electric':  3.412, 'gas': 1.026}
    col = value_lb_dict[measure_type]
    m = multiplier_dict[measure_type]
    ylabel = {'electric': 'electric (kBtu/sq.ft)', 'gas': 'gas kBtu/sq.ft'}
    print len(bs_pair)
    sns.set_style("whitegrid")
    # palette = sns.cubehelix_palette(len(bs_pair))
    palette = sns.color_palette('husl', len(bs_pair))
    sns.set_palette(palette)
    colors_rgb = [util.float2hex(x) for x in palette]
    sns.set_context("talk", font_scale=1)
    jsondir = os.getcwd() + '/input/FY/interval/ion_0627/piecewise_all/json_{0}/'.format(occtime)
    # csvdir = os.getcwd() + '/input/FY/interval/ion_0627/piecewise_all/csv/'
    for i, (b, s) in enumerate(bs_pair)[:5]:
        print b, s
        try:
            area = df_area.ix[b, 'Gross_Sq.Ft']
        except KeyError:
            print 'No area found'
            continue
        df = join_interval(b, s, area, col, m, measure_type, conn)
        # df.to_csv(homedir + 'temp/{0}.csv'.format(b))
        df = df[df[col] >= 0]
        points = df[col]
        outliers = show_outlier(points, b, 'upper', measure_type, 5)
        df['outlier'] = outliers
        df = df[~np.array(outliers)]
        df['status_week_day_night'] = \
            df.apply(lambda r: util.get_status(r['hour'], r['day']), axis=1)
        min_time = df['Timestamp'].min()
        max_time = df['Timestamp'].max()
        gr = df.groupby('status_week_day_night')
        bx = plt.axes()
        d0 = plot_piece(gr, bx, occtime, colors_rgb[i], measure_type, b, s, scatter=False, annote=True, jsondir=jsondir)
    plt.xlabel('Temperature_F')
    # plt.show()
    path = os.getcwd() + '/input/FY/interval/ion_0627/piecewise_all/{0}_{1}.png'.format(measure_type, occtime)
    P.savefig(path, dpi = my_dpi, figsize = (2000/my_dpi, 500/my_dpi), bbox_inches='tight')
    shutil.copy(path, path.replace('input/FY/interval/ion_0627/piecewise_all', 'plot_FY_weather/html/interval/lean/all'))
    plt.close()
    return
Пример #3
0
def fit_time(measure_type, region, season=None):
    conn = uo.connect('all')
    with conn:
        df_bs = pd.read_sql(
            'SELECT Building_Number, ICAO, eui_elec, eui_gas, year, month, ave FROM EUAS_monthly_weather',
            conn)
        df_region = pd.read_sql(
            'SELECT DISTINCT Building_Number, [Region_No.] FROM EUAS_monthly',
            conn)
    if measure_type == 'electric':
        good_set = gbs.get_energy_set('eui_elec')
    elif measure_type == 'gas':
        good_set = gbs.get_energy_set('gas')
    df_bs = pd.merge(df_bs, df_region, on='Building_Number', how='left')
    df_bs = df_bs[df_bs['Building_Number'].map(lambda x: x in good_set)]
    df_bs = df_bs[df_bs['Region_No.'] == str(region)]
    df_bs = df_bs[df_bs['eui_elec'].notnull()]
    df_bs = df_bs[df_bs['eui_gas'].notnull()]
    df_bs.sort_values(by=['Building_Number', 'year', 'month'],
                      ascending=False,
                      inplace=True)
    bs_pair = list(set(zip(df_bs['Building_Number'], df_bs['ICAO'])))
    df_bs['Timestamp'] = df_bs.apply(
        lambda r: '{}-{}'.format(int(r['year']), int(r['month'])), axis=1)
    sns.set_style("whitegrid")
    sns.set_context("talk", font_scale=1)
    ylabel = {'electric': 'electric (kBtu/sq.ft)', 'gas': 'gas kBtu/sq.ft'}
    col_dict = {'electric': 'eui_elec', 'gas': 'eui_gas'}
    print len(bs_pair)
    sns.set_style("whitegrid")
    # palette = sns.cubehelix_palette(len(bs_pair))
    palette = sns.color_palette('husl', len(bs_pair))
    sns.set_palette(palette)
    colors_rgb = [util.float2hex(x) for x in palette]
    sns.set_context("talk", font_scale=1)
    jsondir = os.getcwd(
    ) + '/plot_FY_weather/html/by_region/Region{}/piecewise_all/json/'.format(
        region)
    title = "Region {}".format(region)
    col = col_dict[measure_type]
    for i, (b, s) in enumerate(bs_pair):
        print b, s
        df = df_bs[df_bs['Building_Number'] == b]
        df = df.head(n=36)
        print df.head()
        points = df[col]
        min_time = df['Timestamp'].min()
        max_time = df['Timestamp'].max()
        bx = plt.axes()
        d0 = plot_piece(df,
                        bx,
                        title,
                        colors_rgb[i],
                        measure_type,
                        b,
                        s,
                        scatter=False,
                        annote=True,
                        jsondir=jsondir,
                        season=season)
    plt.xlabel('Temperature_F')
    # plt.show()
    if season is None:
        path = os.getcwd(
        ) + '/plot_FY_weather/html/by_region/Region{}/piecewise_all/{}.png'.format(
            region, measure_type)
    else:
        path = os.getcwd(
        ) + '/plot_FY_weather/html/by_region/Region{}/piecewise_all/{}_{}.png'.format(
            region, measure_type, season)
    P.savefig(path,
              dpi=my_dpi,
              figsize=(2000 / my_dpi, 500 / my_dpi),
              bbox_inches='tight')
    plt.close()
    return
Пример #4
0
def fit(measure_type, year=None, season=None):
    conn = uo.connect('interval_ion')
    with conn:
        df_bs = pd.read_sql('SELECT * FROM {0}_id_station'.format(measure_type), conn)
        df_area = pd.read_sql('SELECT * FROM area', conn)
        df_tz = pd.read_sql('SELECT Building_Number, rawOffset FROM EUAS_timezone', conn)
    df_tz.set_index('Building_Number', inplace=True)
    df_area.set_index('Building_Number', inplace=True)
    bs_pair = zip(df_bs['Building_Number'], df_bs['ICAO'])
    sns.set_style("whitegrid")
    sns.set_palette("Set2", 2)
    sns.set_context("talk", font_scale=1)
    # col_wrap_dict = {'hour': 6, 'month': 4, 'day': 5, 'status':2}
    # upper = {'electric': 600, 'gas': 2500}
    value_lb_dict = {'electric': 'Electric_(KWH)', 'gas':
                     'Gas_(CubicFeet)'}
    multiplier_dict = {'electric':  3.412, 'gas': 1.026}
    col = value_lb_dict[measure_type]
    m = multiplier_dict[measure_type]
    ylabel = {'electric': 'electric (kBtu/sq.ft)', 'gas': 'gas kBtu/sq.ft'}
    # test = ['TN0088ZZ', 'TX0057ZZ', 'NY0281ZZ', 'NY0304ZZ', 'MO0106ZZ']
    # test = ['FL0067ZZ']
    # bs_pair = [x for x in bs_pair if x[0] in test]
    lines = ['Building_Number,week night save%,weekend day save%,weekend night save%,aggregate save%,CVRMSE week day,CVRMSE week night,CVRMSE weekend day,CVRMSE weekend night']
    # bs_pair = bs_pair[:1]
    print len(bs_pair)
    for b, s in bs_pair:
        print b, s
        try:
            area = df_area.ix[b, 'Gross_Sq.Ft']
        except KeyError:
            print 'No area found'
            continue
        offset = df_tz.loc[b, 'rawOffset']
        df = join_interval(offset, b, s, area, col, m, measure_type, conn, year, season)
        if len(df) == 0:
            continue
        df.to_csv(homedir + 'temp/{0}.csv'.format(b))
        df = df[df[col] >= 0]
        points = df[col]
        # outliers = show_outlier(points, b, 'upper', measure_type, 5)
        outliers = show_outlier(points, b, 'upper', measure_type, 1.5)
        df['outlier'] = outliers
        df = df[~np.array(outliers)]
        df['status_week_day_night'] = \
            df.apply(lambda r: util.get_status(r['hour'], r['day']), axis=1)
        min_time = df['Timestamp'].min()
        max_time = df['Timestamp'].max()
        sns.set_style("whitegrid")
        colors = sns.color_palette('Paired', 16)
        colors_rgb = [util.float2hex(x) for x in colors]
        sns.set_context("talk", font_scale=1)
        gr = df.groupby('status_week_day_night')
        f, axarr = plt.subplots(2, 2, sharex=True, sharey=True)
        d0 = plot_piece(gr, axarr[0, 0], 'week day', colors_rgb[0], measure_type, b, s)
        if not d0 is None:
            axarr[0, 0].set_title('{0} ({3})\nbreak point {1}F, CV(RMSE): {2:.3f}'.format('week day', d0['breakpoint'], d0['CV(RMSE)'], b))
        d1 = plot_piece(gr, axarr[0, 1], 'week night', colors_rgb[1], measure_type, b, s)
        x0 = d0['x_range'][0]
        x1 = d0['x_range'][1]
        if type(d0['breakpoint']) == tuple:
            b0 = d['breakpoint'][0]
            b1 = d['breakpoint'][1]
            x = np.array([x0, b0, b1, x1])
        else:
            x = np.array([x0, d0['breakpoint'], x1])
        y = d0['fun'](x, *d0['regression_par'])
        d2 = plot_piece(gr, axarr[1, 0], 'weekend day', colors_rgb[2], measure_type, b, s)
        d3 = plot_piece(gr, axarr[1, 1], 'weekend night', colors_rgb[3], measure_type, b, s)
        axarr[0, 1].plot(x, y, ls='--', c='red')
        axarr[1, 0].plot(x, y, ls='--', c='red')
        axarr[1, 1].plot(x, y, ls='--', c='red')
        plt.ylim((0, 0.02))
        plt.xlim((0, 100))
        save, err = compute_saving_all(b, d0, d1, d2, d3, axarr)
        # save, err = compute_saving_all_setback(d0, d1, d2, d3, axarr)
        plt.suptitle('{0} -- {1}'.format(min_time, max_time))
        f.text(0.5, 0.04, 'Temperature_F', ha='center', va='center')
        if year is None:
            if season is None:
                path = os.getcwd() + '/input/FY/interval/ion_0627/piecewise/{1}/{0}_{1}.png'.format(b, measure_type)
            else:
                path = os.getcwd() + '/input/FY/interval/ion_0627/piecewise/{1}/{0}_{1}_{2}.png'.format(b, measure_type, season)
        else:
            path = os.getcwd() + '/input/FY/interval/ion_0627/piecewise/{1}/{0}_{1}_{2}.png'.format(b, measure_type, int(year))
        P.savefig(path, dpi = my_dpi, figsize = (2000/my_dpi, 500/my_dpi), bbox_inches='tight')
        shutil.copy(path, path.replace('input/FY/interval/ion_0627/piecewise', 'plot_FY_weather/html/interval/lean'))
        plt.close()
        lines.append(','.join([b] + save + err))
    if year is None:
        if season is None:
            table_path = os.getcwd() + '/input/FY/interval/ion_0627/table/{0}_save.csv'.format(measure_type)
        else:
            table_path = os.getcwd() + '/input/FY/interval/ion_0627/table/{0}_save_{1}.csv'.format(measure_type, season)
    else:
        table_path = os.getcwd() + '/input/FY/interval/ion_0627/table/{0}_save_{1}.csv'.format(measure_type, int(year))
    with open(table_path, 'w+') as wt:
        wt.write('\n'.join(lines))
    return
Пример #5
0
def fit(measure_type, year=None):
    conn = uo.connect('interval_ion')
    with conn:
        df_bs = pd.read_sql('SELECT * FROM {0}_id_station'.format(measure_type), conn)
        df_area = pd.read_sql('SELECT * FROM area', conn)
    df_area.set_index('Building_Number', inplace=True)
    bs_pair = zip(df_bs['Building_Number'], df_bs['ICAO'])
    sns.set_style("whitegrid")
    sns.set_palette("Set2", 2)
    sns.set_context("talk", font_scale=1)
    # col_wrap_dict = {'hour': 6, 'month': 4, 'day': 5, 'status':2}
    # upper = {'electric': 600, 'gas': 2500}
    value_lb_dict = {'electric': 'Electric_(KWH)', 'gas':
                     'Gas_(CubicFeet)'}
    multiplier_dict = {'electric':  3.412, 'gas': 1.026}
    col = value_lb_dict[measure_type]
    m = multiplier_dict[measure_type]
    ylabel = {'electric': 'electric (kBtu/sq.ft)', 'gas': 'gas kBtu/sq.ft'}
    # test = ['TN0088ZZ', 'TX0057ZZ', 'NY0281ZZ', 'NY0304ZZ', 'MO0106ZZ']
    # test = ['NM0050ZZ']
    # bs_pair = [x for x in bs_pair if x[0] in test]
    lines = ['Building_Number,week night save%,weekend day save%,weekend night save%,aggregate save%,CVRMSE week day,CVRMSE week night,CVRMSE weekend day,CVRMSE weekend night']
    print len(bs_pair)
    # bs_pair = bs_pair[:1]
    for b, s in bs_pair:
        print b, s
        try:
            area = df_area.ix[b, 'Gross_Sq.Ft']
        except KeyError:
            print 'No area found'
            continue
        df = join_interval(b, s, area, col, m, measure_type, conn, year)
        if len(df) == 0:
            continue
        df.to_csv(homedir + 'temp/{0}.csv'.format(b))
        df = df[df[col] >= 0]
        points = df[col]
        # outliers = show_outlier(points, b, 'upper', measure_type, 5)
        outliers = show_outlier(points, b, 'upper', measure_type, 1.5)
        df['outlier'] = outliers
        df = df[~np.array(outliers)]
        df['status_week_day_night'] = \
            df.apply(lambda r: util.get_status(r['hour'], r['day']), axis=1)
        min_time = df['Timestamp'].min()
        max_time = df['Timestamp'].max()
        sns.set_style("whitegrid")
        colors = sns.color_palette('Paired', 16)
        colors_rgb = [util.float2hex(x) for x in colors]
        sns.set_context("talk", font_scale=1)
        gr = df.groupby('status_week_day_night')
        f, axarr = plt.subplots(2, 2, sharex=True, sharey=True)
        d0 = plot_piece(gr, axarr[0, 0], 'week day', colors_rgb[0], measure_type, b, s)
        if not d0 is None:
            axarr[0, 0].set_title('{0}\nbreak point {1}F, CV(RMSE): {2:.3f}'.format('week day', d0['breakpoint'], d0['CV(RMSE)']))
        d1 = plot_piece(gr, axarr[0, 1], 'week night', colors_rgb[1], measure_type, b, s)
        d2 = plot_piece(gr, axarr[1, 0], 'weekend day', colors_rgb[2], measure_type, b, s)
        d3 = plot_piece(gr, axarr[1, 1], 'weekend night', colors_rgb[3], measure_type, b, s)
        save, err = compute_saving_all(d0, d1, d2, d3, axarr)
        plt.suptitle('{0} -- {1}'.format(min_time, max_time))
        f.text(0.5, 0.04, 'Temperature_F', ha='center', va='center')
        if year is None:
            path = os.getcwd() + '/input/FY/interval/ion_0627/piecewise/{1}/{0}_{1}.png'.format(b, measure_type)
        else:
            path = os.getcwd() + '/input/FY/interval/ion_0627/piecewise/{1}/{0}_{1}_{2}.png'.format(b, measure_type, int(year))
        P.savefig(path, dpi = my_dpi, figsize = (2000/my_dpi, 500/my_dpi), bbox_inches='tight')
        shutil.copy(path, path.replace('input/FY/interval/ion_0627/piecewise', 'plot_FY_weather/html/interval/lean'))
        plt.close()
        lines.append(','.join([b] + save + err))
    if year is None:
        table_path = os.getcwd() + '/input/FY/interval/ion_0627/table/{0}_save.csv'.format(measure_type)
    else:
        table_path = os.getcwd() + '/input/FY/interval/ion_0627/table/{0}_save_{1}.csv'.format(measure_type, int(year))
    with open(table_path, 'w+') as wt:
        wt.write('\n'.join(lines))
    return