def generate_result_file(): dsets = [] for lang in ['pt', 'es']: X = util.get_X_test(data_type='keras_tokenized_tri', lang=lang, file_type="dump") model, epoch = load_lastest(lang=lang) y_pred = util.one_hot_decode(model.predict(process_x(X))) index = np.load('./data/test_index_'+lang+'.npy') df = pd.DataFrame({'id': index, 'category': y_pred}) df.index = df['id'] dsets.append(df) print('y_pred '+lang+' unique: ', len(np.unique(y_pred))) df = pd.concat(dsets) df = df.sort_index() df[['id', 'category']].to_csv('./data/results-'+NAME+'.csv', index=False)
#weights for each epoch according with the number of epochs trained weigths_epoch = { 1: [1], 2: [0.35, 0.65], 3: [0.15, 0.35, 0.5], 4: [0.1, 0.2, 0.3, 0.4], 5: [0.1, 0.15, 0.2, 0.25, 0.3] } num_classes = len(util.get_categories()) #Load test data for each language data = {} for lang in ['es', 'pt']: X_test = util.get_X_test(data_type='keras_tokenized_tri', lang=lang, file_type="dump") index = np.load(DATA_PATH + 'test_index_' + lang + '.npy') data[lang] = {'index': index, 'X_test': process_x(X_test)} del X_test, index gc.collect() paths = {} for model_name in model_list: PATH = DATA_PATH + 'models/' + model_name + '/' files = {'pt': {}, 'es': {}} if (len(os.listdir(PATH)) > 0): for file in os.listdir(PATH): if (file.startswith('weights')): epoch = int(file.split('-')[1]) lang = file.split('-')[-1].split('.')[0]