def loadKeys(self): if not os.path.exists("keys"): os.mkdir("keys") return files = get_all_files("keys/") for key in files: key_name = self.loadKeyFromFile(f"keys/{key}") self.gui.keyBox.insert(0, key_name)
def calculate(): d = sys.argv[1] files = util.get_all_files(d) files_count = float(len(files)) avg = 0 for f in files: h = open(f[0] + f[1]) body = h.read() avg += average(body) h.close() avg /= files_count print 'Average word length: ' + str(avg)
def main(): argument_parser = argparse.ArgumentParser() argument_parser.add_argument('--input-dir') argument_parser.add_argument('--output-dir', default='data') argument_parser.add_argument('--train-size', default=0.7, type=float) args = argument_parser.parse_args() sub_dirs = get_subdirs(args.input_dir) for class_dir in sub_dirs: file_paths = get_all_files(class_dir) # Remove the folder above the dataset class_dir = class_dir.split('/')[-1] train_files, test_files = train_test_split(file_paths, train_size=args.train_size) move_files(train_files, args.output_dir + '/train/' + class_dir) move_files(test_files, args.output_dir + '/test/' + class_dir)
def load_all(styles, batch_size, time_steps): """ Loads all MIDI files as a piano roll. (For Keras) """ note_data = [] beat_data = [] style_data = [] note_target = [] # TODO: Can speed this up with better parallel loading. Order gaurentee. styles = [y for x in styles for y in x] for style_id, style in enumerate(styles): style_hot = one_hot(style_id, NUM_STYLES) # Parallel process all files into a list of music sequences seqs = Parallel(n_jobs=multiprocessing.cpu_count(), backend='threading')(delayed(load_midi)(f) for f in get_all_files([style])) for seq in seqs: if len(seq) >= time_steps: # Clamp MIDI to note range seq = clamp_midi(seq) # Create training data and labels train_data, label_data = stagger(seq, time_steps) note_data += train_data note_target += label_data # beats = [compute_beat(i, NOTES_PER_BAR) for i in range(len(seq))] # beat_data += stagger(beats, time_steps)[0] note_data = np.array(note_data) # beat_data = np.array(beat_data) note_target = np.array(note_target) #note_data[:,:,:,2] = 0 #note_data[:,:,:,0] #note_target[:,:,:,2] = 0 #note_target[:,:,:,0] return note_data, note_target,
def main_augumented_img(file_path, aug_img_folder): image_paths = util.get_all_files(file_path, reg='.npy') count = 0 total_img = len(image_paths) for i in range(total_img): print('processed images ratio: ' + str(int(i * 100 / total_img)) + "%") c = gen_augumented_img(image_paths[i], aug_img_folder, size_label=128, stride=64) count += c print('total num of images: ' + str(i)) print('total num of <quad, bayer/rgb> pairs after augumentation: ' + str(count)) pass
def init_environment(self): if os.path.exists(self.pages_folder_path): util.remove_folder_contents(self.pages_folder_path) os.makedirs(self.pages_folder_path) if os.path.exists(self.train_path): util.remove_folder_contents(self.train_path) os.makedirs(self.train_path) if os.path.exists(self.valid_path): util.remove_folder_contents(self.valid_path) os.makedirs(self.valid_path) if os.path.exists(self.test_path): util.remove_folder_contents(self.test_path) os.makedirs(self.test_path) if not os.path.exists(self.urls_folder_path): print('pls provide url files in a folder named urls') return self.urls_file_names = util.get_all_files(self.urls_folder_path) logger.info('init environment')
def unpack_works(config): cv_folder = config['working'] + config['cv dir'] all_cv = util.get_all_files(cv_folder) works = unpack_works_from_all_cv(all_cv) return works
ids2names[idn] = set() ids2names[idn].add(name) if (debug) and (len(ids2names[idn]) > 1): print('{0} cant write their name!'.format(name)) except ValueError: print('discarded entry!') return names2ids, ids2names if __name__ == '__main__': config = util.load_config(sys.argv[1]) if sys.argv[2] == 'CV': cv_folder = config['working'] + config['cv dir'] all_cv = util.get_all_files(cv_folder) names = get_name_frequency(all_cv, debug=True) print('---') print(names) print('...') elif sys.argv[2] == 'ID': source = cfs.get_input(config) names2ids, ids2names = relate_names_and_ids(source, debug=True) print('--- # Name -> #Ids') for name in names2ids: print('{0}: {1}'.format(name, len(names2ids[name]))) print('--- # Id -> #names') for idn in ids2names: print('{0}: {1}'.format(idn, len(ids2names[idn]))) print('...')