Пример #1
0
def mark_all(model, data_dir, out_dir='marked_predictions', backbone='resnet34',
             input_size=None, preprocessing_fcn=None):

    if preprocessing_fcn is None:
        preprocessing_fcn = get_preprocessing(backbone)

    if not os.path.isdir(out_dir):
        os.mkdir(out_dir)

    images = []
    for directory, _, files in os.walk(data_dir):
        for fn in files:
            if is_image(fn):
                images.append(os.path.join(directory, fn))

    s = 'filename,x1,y1,x2,y2,x3,y3,x4,y4,x5,y5,x6,y6,x7,y7,x8,y8,x9,y9,x10,y10\n'
    for fn_full in images:
        name = os.path.splitext(os.path.basename(fn_full))[0]
        mask = predict(model=model,
                       image=fn_full,
                       out_path=None,
                       preprocessing_fcn=preprocessing_fcn,
                       input_size=input_size)
        pts = pmask2points(np.squeeze(mask))
        s += (os.path.basename(fn_full) + ',' +
              ','.join('%s,%s' % (x, y) for x, y in pts) + '\n')
        image = resize(cv.imread(fn_full), dsize=input_size)
        cv.imwrite(os.path.join(out_dir, name + '.jpg'),
                   mark_image(image, pts))
        cv.imwrite(os.path.join(out_dir, name + '.png'),
                   (np.squeeze(mask).sum(axis=2)*255).astype('uint8'))
    with open(os.path.join(out_dir, 'points.csv'), 'w+') as csv_out:
        csv_out.write(s)
Пример #2
0
def rename(folder, format):
    """
    This function renames all images in a given
    directory according to the pattern given in 
    the format given, init.

    Format: 
        use NUM for the number of the image.
        imgNUM -> img1, img2, .., img100,..
    """

    # Get list of all files then rename images
    path = util.abspath(folder)
    names_lis = os.listdir(path)
    os.chdir(path)  # cwd to work with OS commands

    # Scan for images and rename them
    for i in range(0, len(names_lis)):
        f = names_lis[i]
        extension = get_extension(f)
        location = "".join([path, "/", f])

        # Need absolute location
        #print("checking location %s. Is file? %s " % (location, is_image(location)))
        if util.is_image(location):
            new_f = "".join([format.replace("NUM", str(i)), ".", extension])
            util.update_line("Renaming file %s to %s." % (f, new_f))
            os.rename(f, new_f)  #Tada, done
Пример #3
0
def predict_all(model,
                data_dir,
                out_dir='results',
                backbone='resnet34',
                input_size=None,
                preprocessing_fcn=None):
    if preprocessing_fcn is None:
        preprocessing_fcn = get_preprocessing(backbone)

    if not os.path.isdir(out_dir):
        os.mkdir(out_dir)

    images = []
    for directory, _, files in os.walk(data_dir):
        for fn in files:
            if is_image(fn):
                images.append(os.path.join(directory, fn))

    for fn_full in images:
        name = os.path.splitext(os.path.basename(fn_full))[0]
        predict(model=model,
                image=fn_full,
                out_path=os.path.join(out_dir, name + '.png'),
                preprocessing_fcn=preprocessing_fcn,
                input_size=input_size)
Пример #4
0
 def __init__(self, image_dir):
     super(DataLoaderHelper, self).__init__()
     self.albedo_path = join(image_dir, "albedo")
     self.depth_path = join(image_dir, "depth")
     self.direct_path = join(image_dir, "direct")
     self.normal_path = join(image_dir, "normal")
     self.gt_path = join(image_dir, "gt")
     self.image_filenames = [
         x for x in listdir(self.albedo_path) if is_image(x)
     ]
Пример #5
0
 def __init__(self, image_dir):
     super(DataLoaderHelper, self).__init__()
     self.albedo_path = join(image_dir, "albedo")
     self.depth_path = join(image_dir, "depth")
     self.direct_path = join(image_dir, "direct")
     self.normal_path = join(image_dir, "normal")
     self.gt_path = join(image_dir, "gt")
     self.image_filenames = [x for x in listdir(self.gt_path) if is_image(x)]
     for i, im_name in enumerate(self.image_filenames):
         base = im_name.split('-')
         im_name = base[1]+'-'+base[2]
         self.image_filenames[i] = im_name
Пример #6
0
                    type=int,
                    default=3,
                    help='output channel')
parser.add_argument('--n_generator_filters',
                    type=int,
                    default=64,
                    help="number of generator filters")
opt = parser.parse_args()

netG_model = torch.load(opt.model)
netG = G(opt.n_channel_input * 4, opt.n_channel_output,
         opt.n_generator_filters)
netG.load_state_dict(netG_model['state_dict_G'])
root_dir = 'dataset/{}/test/'.format(opt.dataset)
image_dir = 'dataset/{}/test/albedo'.format(opt.dataset)
image_filenames = [x for x in os.listdir(image_dir) if is_image(x)]

for image_name in image_filenames:
    albedo_image = load_image(root_dir + 'albedo/' + image_name)
    direct_image = load_image(root_dir + 'direct/' + image_name)
    normal_image = load_image(root_dir + 'normal/' + image_name)
    depth_image = load_image(root_dir + 'depth/' + image_name)
    gt_image = load_image(root_dir + 'gt/' + image_name)

    albedo = Variable(albedo_image).view(1, -1, 256, 256).cuda()
    direct = Variable(direct_image).view(1, -1, 256, 256).cuda()
    normal = Variable(normal_image).view(1, -1, 256, 256).cuda()
    depth = Variable(depth_image).view(1, -1, 256, 256).cuda()

    netG = netG.cuda()