""" from distance_model import DistanceModel import data_loading import util import image_operations as operations import feature_extraction as extraction from skimage import feature, color, exposure import feature_validation as validation training_images, training_labels, training_classes = data_loading.loadTrainingImagesPoleNumbersAndClasses( ) size = 100 print("resizing...") resized = util.loading_map(lambda x: operations.cropAndResize(x, 0, size), training_images) print("hsv...") hsv = util.loading_map(color.rgb2hsv, resized) print("grayscaling...") grayscaled = util.loading_map(color.rgb2gray, resized) print("colors") colors = util.loading_map( lambda x: extraction.split_image_features( extraction.calculateColorFeatures, 7, x), hsv) n_folds = 5 print("evaluating colors") model = DistanceModel() #from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import LogisticRegression from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler, RobustScaler from sklearn.decomposition import PCA from sklearn import random_projection from sklearn.ensemble import RandomForestClassifier from sklearn import feature_selection #preloading print("loading data...") size = 100 images, labels, classes = loader.loadTrainingImagesPoleNumbersAndClasses() amount = len(images) print("resizing...") resized = util.loading_map(lambda x: operations.cropAndResize(x, 0, size), images) print("grayscaling...") grayscaled = util.loading_map(color.rgb2gray, resized) n_folds = 10 model = Pipeline([("standard scaler", StandardScaler()), ("logistic regression", LogisticRegression(solver='lbfgs', multi_class='multinomial'))]) for cpb in range(2, 11): ppc = int(100 / cpb) print("hog_8_", ppc, "_", cpb, " features") hog = util.loading_map( lambda x: feature.hog(x,
if (size1 * size2 * size3 != size1_F * size2_F * size3_F): print("size:", size1, ",", size2) if (i % 100 == 0): print(i, "/", amount) array = numpy.array(resized[i]) a = numpy.reshape(array, (size1 * size2 * size3)) reshaped = numpy.concatenate((reshaped, [a]), 0) return reshaped print("loading data...") size = 32 images, labels, classes = loader.loadTrainingImagesPoleNumbersAndClasses() amount = len(images) print("resizing...") resized = util.loading_map(lambda x: operations.cropAndResize(x, 0, size), images) print("hsv...") hsv = util.loading_map(color.rgb2hsv, resized) hsv = flatten(hsv, 3) from sklearn import random_projection n_folds = 5 print("40") model = Pipeline([("Multi-layer Perceptron", MLPClassifier(algorithm='sgd', hidden_layer_sizes=(400), random_state=1, learning_rate='constant', max_iter=300))])
from sklearn.linear_model import LogisticRegression from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler, RobustScaler from sklearn.decomposition import PCA from sklearn import random_projection from sklearn.ensemble import RandomForestClassifier from sklearn import feature_selection #preloading print("loading data...") size = 100 images, labels, classes = loader.loadTrainingImagesPoleNumbersAndClasses() amount = len(images) print("resizing...") resized = util.loading_map(lambda x: operations.cropAndResize(x, 0, size), images) print("hsv...") hsv = util.loading_map(color.rgb2hsv, resized) print("luv...") luv = util.loading_map(color.rgb2luv, resized) print("grayscaling...") grayscaled = util.loading_map(color.rgb2gray, resized) print("edges...") edges = util.loading_map(feature.canny, grayscaled) print("brightness features") brightness = util.loading_map(extraction.calculateDarktoBrightRatio, resized) print("luv features") luv_features = util.loading_map(lambda x: extraction.pixel_features(x, 11), luv) print("hog features")
import util import numpy from skimage import color, exposure from sklearn import lda from sklearn.linear_model import LogisticRegression from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plot print("loading data...") size = 100 images, labels, classes = loader.loadTrainingImagesPoleNumbersAndClasses() amount = len(images) print("resizing...") resized = util.loading_map(lambda x: operations.cropAndResize(x, 0, size), images) print("hsv...") hsv = util.loading_map(color.rgb2hsv, resized) print("luv...") luv = util.loading_map(color.rgb2luv, resized) model = Pipeline([("standard scaler", StandardScaler()), ("logistic regression", LogisticRegression(solver='lbfgs', multi_class='multinomial'))]) n_folds = 10 for i in range(1, 14, 2): print("rgb", i) rgb_f = util.loading_map(lambda x: extraction.pixel_features(x, i),
fd = feature.hog(image, orientations=orient, pixels_per_cell=ppc, cells_per_block=cpb, normalise=normalise) return numpy.array(fd).flatten() #preloading print("loading data...") size = 100 images, labels, classes = loader.loadTrainingImagesPoleNumbersAndClasses() amount = len(images) print("resizing...") resized = util.loading_map(lambda x: operations.cropAndResize(x, 0, size), images) print("hsv...") hsv = util.loading_map(color.rgb2hsv, resized) print("luv...") luv = util.loading_map(color.rgb2luv, resized) print("hed...") hed = util.loading_map(color.rgb2hed, resized) print("rgbcie...") cie = util.loading_map(color.rgb2rgbcie, resized) print("grayscaling...") grayscaled = util.loading_map(color.rgb2gray, resized) print("normalising...") normalized = util.loading_map(exposure.equalize_hist, grayscaled) #print("edges...") #edges = util.loading_map(feature.canny, grayscaled)
def reduce_features(features, number, classes): partial_features = numpy.array(features)[:, 1::10] partial_classes = numpy.array(classes)[:, 1::10] model = lda.LDA(n_components=number) model.fit_transform(partial_features, partial_classes) return model.transform(features) #preloading print("loading data...") size = 70 images, labels, classes = loader.loadTrainingImagesPoleNumbersAndClasses() amount = len(images) print("resizing...") resized = util.loading_map(lambda x: operations.cropAndResize(x, 0, size), images) print("grayscaling...") grayscaled = util.loading_map(color.rgb2gray, resized) #feature extraction #print("split color features...") #split_color_features = util.loading_map(lambda x: extraction.split_image_features(extraction.color_features, 3, x), resized) #print("corner count") #corner_features = util.loading_map(lambda x: corner_count(x), grayscaled) print("daisy features") daisy = util.loading_map( lambda x: feature.daisy( x, step=8, radius=20, rings=2, histograms=4, orientations=4).flatten(), grayscaled) n_folds = 5
import feature_validation as validation import feature_extraction as extraction import image_operations as operations import data_loading as loader import util import numpy from skimage import color #preloading print("loading data...") #images, classes = loader.loadUniqueTrainingAndClasses() images, classes = loader.loadTrainingAndClasses() amount = len(images) print("resizing...") resized = util.loading_map(lambda x: operations.cropAndResize(x, 0, 50), images) print("normalizing...") normalized = util.loading_map(operations.normalizeImage, resized) print("grayscaling...") grayscale = util.loading_map(color.rgb2gray, resized) #print("reducing color space...") #reduced = util.loading_map(operations.reduceColorSpace, resized) #feature extraction #print("color features...") #color_features = util.loading_map(extraction.color_features, resized) #print("normalized color features...") #normalized_color_features = util.loading_map(extraction.color_features, normalized) print("mean channels features...") split_color_features = util.loading_map( lambda x: extraction.split_image_features(extraction.color_features, 3, x),
amount = len(images) print("resizing...") resized = [image_operations.cropAndResize(img, 0.1,size) for img in images] print("luv...") luv = [color.rgb2luv(img) for img in resized] print("hed...") hed = [color.rgb2hed(img) for img in resized] print("grayscaling...") grayscaled = [color.rgb2gray(img) for img in resized] #print("edges...") print("brightness features") brightness = util.loading_map(extraction.calculateDarktoBrightRatio, resized) print("luv features") luv_features = util.loading_map(lambda x: extraction.split_image_features( lambda y : extraction.color_features(y, mean = True, std = True), 7, x), luv) print('\a') print("hed features") hed_features = util.loading_map(lambda x: extraction.split_image_features( lambda y : extraction.color_features(y, mean = True, std = True), 8, x), hed) print("hog features") hog = util.loading_map(lambda x: feature_extraction.calcHOGWrapper(x), grayscaled)
from sklearn.linear_model import LogisticRegression from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler, RobustScaler from sklearn.decomposition import PCA from sklearn import random_projection from sklearn.ensemble import RandomForestClassifier from sklearn import feature_selection #preloading print("loading data...") size = 100 images, labels, classes = loader.loadTrainingImagesPoleNumbersAndClasses() amount = len(images) print("resizing...") resized = util.loading_map(lambda x: operations.cropAndResize(x, 0, size), images) print("hsv...") hsv = util.loading_map(color.rgb2hsv, resized) print("luv...") luv = util.loading_map(color.rgb2luv, resized) print("grayscaling...") grayscaled = util.loading_map(color.rgb2gray, resized) print("edges...") edges = util.loading_map(feature.canny, grayscaled) print("brightness features") brightness = util.loading_map(extraction.calculateDarktoBrightRatio, resized) print("hsv 11 + std") hsv_11_std = util.loading_map( lambda x: extraction.split_image_features( lambda y: extraction.color_features(y, mean=True, std=True), 11, x),
fd = feature.hog(image, orientations=orient, pixels_per_cell=ppc, cells_per_block=cpb, normalise=normalise) return numpy.array(fd).flatten() #preloading print("loading data...") size = 100 images, labels, classes = loader.loadTrainingImagesPoleNumbersAndClasses() amount = len(images) print("resizing...") resized = util.loading_map(lambda x: operations.cropAndResize(x, 0, size), images) print("hsv...") hsv = util.loading_map(color.rgb2hsv, resized) print("luv...") luv = util.loading_map(color.rgb2luv, resized) print("hed...") hed = util.loading_map(color.rgb2hed, resized) print("rgbcie...") cie = util.loading_map(color.rgb2rgbcie, resized) print("grayscaling...") grayscaled = util.loading_map(color.rgb2gray, resized) #print("edges...") #edges = util.loading_map(feature.canny, grayscaled) print("brightness features") brightness = util.loading_map(extraction.calculateDarktoBrightRatio, resized)