def make_experiment_fn(args): train_input_fn = util.make_input_fn( args.train_data_file, args.batch_size, args.num_skips, args.skip_window, args.vocab_size, num_epochs=args.num_epochs ) eval_input_fn = util.make_input_fn( args.eval_data_file, args.batch_size, args.num_skips, args.skip_window, args.vocab_size, num_epochs=args.num_epochs ) def experiment_fn(output_dir): return Experiment( Estimator( model_fn=model.make_model_fn(**args.__dict__), model_dir=output_dir ), train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, continuous_eval_throttle_secs=args.min_eval_seconds, min_eval_frequency=args.min_train_eval_rate, # Until Experiment moves to train_and_evaluate call internally local_eval_frequency=args.min_train_eval_rate ) return experiment_fn
def make_experiment_fn(args): train_input_fn = util.make_input_fn( args.train_data_paths, args.batch_size, args.index_file, num_epochs=args.num_epochs ) eval_input_fn = util.make_input_fn( args.eval_data_paths, args.batch_size, args.index_file, num_epochs=args.num_epochs ) def experiment_fn(output_dir): return Experiment( Estimator( model_fn=model.make_model_fn(args), model_dir=output_dir ), train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, continuous_eval_throttle_secs=args.min_eval_seconds, min_eval_frequency=args.min_train_eval_rate, # Until learn_runner is updated to use train_and_evaluate local_eval_frequency=args.min_train_eval_rate ) return experiment_fn
def make_experiment_fn(args): train_input_fn = util.make_input_fn( args.train_data_paths, util.parse_examples, args.batch_size, num_epochs=args.num_epochs ) eval_input_fn = util.make_input_fn( args.eval_data_paths, util.parse_examples, args.batch_size, num_epochs=args.num_epochs ) def _experiment_fn(output_dir): return learn.Experiment( learn.Estimator( model_fn=model.make_model_fn(args), model_dir=output_dir ), train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, train_steps=args.max_steps, eval_metrics=model.METRICS, continuous_eval_throttle_secs=args.min_eval_seconds, min_eval_frequency=args.min_train_eval_rate, # Until learn_runner is updated to use train_and_evaluate local_eval_frequency=args.min_train_eval_rate ) return _experiment_fn
def make_experiment_fn(args): train_input_fn = util.make_input_fn(args.train_data_file, args.batch_size, args.num_skips, args.skip_window, args.vocab_size, num_epochs=args.num_epochs) eval_input_fn = util.make_input_fn(args.eval_data_file, args.batch_size, args.num_skips, args.skip_window, args.vocab_size, num_epochs=args.num_epochs) def experiment_fn(output_dir): return Experiment( Estimator(model_fn=model.make_model_fn(**args.__dict__), model_dir=output_dir), train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, continuous_eval_throttle_secs=args.min_eval_seconds, min_eval_frequency=args.min_train_eval_rate, # Until Experiment moves to train_and_evaluate call internally local_eval_frequency=args.min_train_eval_rate) return experiment_fn
def make_experiment_fn(args): train_input_fn = util.make_input_fn(args.train_data_paths, args.batch_size, args.index_file, num_epochs=args.num_epochs) eval_input_fn = util.make_input_fn(args.eval_data_paths, args.batch_size, args.index_file, num_epochs=args.num_epochs) def experiment_fn(output_dir): return Experiment( Estimator(model_fn=model.make_model_fn(args), model_dir=output_dir), train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, continuous_eval_throttle_secs=args.min_eval_seconds, min_eval_frequency=args.min_train_eval_rate, # Until learn_runner is updated to use train_and_evaluate local_eval_frequency=args.min_train_eval_rate) return experiment_fn