Пример #1
0
def plotFIAvg(data=dataAvg):
    plotFeatureImportance(
        data,
        "RandConv with original image (feature 0) and custom filters\n3x3 average pooling",
        None,
        lim=0.085,
        colorate=[("3x3 average", "b")],
    )
Пример #2
0
def plotFImax357(data=dataMax357):

    plotFeatureImportance(
        data,
        "RandConv with original image (feature 0) and custom filters\n3x3, 5x5, 7x7 maximum pooling",
        None,
        lim=0.025,
        colorate=[("3x3 maximum", "g"), ("5x5 maximum", "y"), ("7x7 maximum", "#F90FC6")],
    )
Пример #3
0
def plotFImMa(data=datanmaM):

    plotFeatureImportance(
        data,
        "RandConv with original image (feature 0) and custom filters\n3x3 minimum, average and maximum pooling",
        None,
        lim=0.025,
        colorate=[("no pooling", "m"), ("3x3 average", "b"), ("3x3 minimum", "r"), ("3x3 maximum", "g")],
    )
Пример #4
0
def plotFIavg357(data=dataAvg357):

    plotFeatureImportance(
        data,
        "RandConv with original image (feature 0) and custom filters\n3x3, 5x5, 7x7 average pooling",
        None,
        lim=0.025,
        colorate=[("3x3 average", "b"), ("5x5 average", "c"), ("7x7 average", "#F69E1B")],
    )
Пример #5
0
def plotFIMax(data=dataMax):

    plotFeatureImportance(
        data,
        "RandConv with original image (feature 0) and custom filters\n3x3 maximum pooling",
        None,
        lim=0.085,
        colorate=[("3x3 maximum", "g")],
    )
Пример #6
0
def plotFINo(data=dataNo):

    plotFeatureImportance(
        data,
        "RandConv with original image (feature 0) and custom filters\nNo pooling",
        None,
        lim=0.085,
        colorate=[("no pooling", "m")],
    )
Пример #7
0
def plotFI(data, nbTree):
    plotFeatureImportance(data, "RandConv with original image (feature 0) \n"+str(nbTree)+" trees", None)
Пример #8
0
def plotFI(data, tNum):
    plotFeatureImportance(data, "RandConv with original image (feature 0) \nTest number "+str(tNum), None)
Пример #9
0
def plotFIWholeImage(data):
    plotFeatureImportance(data, "RandConv with original image (feature 0) \nWhole image", None)
Пример #10
0
def plotFI(data, nbSW):
    plotFeatureImportance(data, "RandConv with original image (feature 0) \n"+str(nbSW)+" subwindow(s)", None)
Пример #11
0
def plotFI(data, k):
    plotFeatureImportance(data, "RandConv with original image (feature 0) \n"+str(k)+" inspected features for each node split", None)
Пример #12
0
def plotFIHist(data, nbTest):
    indices = np.argsort(data)[::-1]
    data = np.array(data)[indices]
    plotFeatureImportance(data, "RandConv with original image (feature 0) : feature importance histogram\nGlobal varibility test "+str(nbTest), None)
Пример #13
0
def plotFI(data, nbTest):
    plotFeatureImportance(data, "RandConv with original image (feature 0) : feature importances \nGlobal varibility test "+str(nbTest), None)
Пример #14
0
def plotFI(data, k):
    plotFeatureImportance(data, "RandConv with original image (feature 0) \nMinimum number of sample to split : "+str(k), None)