Пример #1
0
    def record_config(self):
        '''
        tk variable values -> config file
        '''

        safe_makedir(self.current_setting_dir())

        f = open(self.current_setting_file(), 'w')
        for (k, v) in self.get_current_settings().items():
            f.write('%s = %s\n' % (k, str(v)))
        f.close()
Пример #2
0
def get_data_dump_name(config,
                       joindata=False,
                       joinsql=False,
                       searchtree=False):
    safe_makedir(os.path.join(config['workdir'], 'data_dumps'))
    condition = make_train_condition_name(config)
    assert not (joindata and joinsql)
    if joindata:
        last_part = '.joindata.hdf5'
    elif joinsql:
        last_part = '.joindata.sql'
    elif searchtree:
        last_part = '.searchtree.hdf5'
    else:
        last_part = '.hdf5'
    database_fname = os.path.join(config['workdir'], "data_dumps",
                                  condition + last_part)
    return database_fname
Пример #3
0
    def synthesise_condition(self):

        if not self.settings_have_changed():
            print 'NO VALUES ALTERED'
            return

        self.current_config_number = self.next_new_config_number
        self.next_new_config_number += 1
        self.reconfigure_synthesiser()

        safe_makedir(self.current_setting_dir())

        self.update_play_buttons()
        self.synthesiser.synth_from_config(
            outdir=self.current_setting_dir()
        )  # opts.output_dir) # (inspect_join_weights_only=False, synth_type='test', outdir=opts.output_dir)

        self.record_config()
Пример #4
0
    opts = a.parse_args()


    synth = Synthesiser(opts.config_fname)
    
    trial = 1

    html_file = os.path.join(opts.output_dir, 'listen.html')

    while shall_we_continue():

        anything_changed = synth.reconfigure_from_config_file()
        if anything_changed:

            current_setting_dir = os.path.join(opts.output_dir, 't'+str(trial).zfill(5))
            safe_makedir(current_setting_dir)

            synth.synth_from_config(outdir=current_setting_dir)
            record_config(synth, current_setting_dir + '/tuned_settings.cfg')

            trial += 1
            voice_dirs = glob.glob(os.path.join(opts.output_dir, 't*'))
            make_internal_webchart.main_work(voice_dirs, outfile=html_file)
            print 'Browse to %s to listen'%(html_file)
        else:
            print 'Nothing changed in config file %s'%(opts.config_fname)




Пример #5
0
def make_magphase_directory_structure(outdir, cepstra=False):
    outdir_hi = os.path.join(outdir, 'high')
    outdir_lo = os.path.join(outdir, 'low')
    for direc in [outdir, outdir_hi, outdir_lo]:
        safe_makedir(direc)
    for subdir in ['mag', 'real', 'imag']:
        for direc in [outdir_hi, outdir_lo]:
            new_direc = os.path.join(direc, subdir)
            safe_makedir(new_direc)
    for subdir in ['shift', 'pm']:
        new_direc = os.path.join(outdir, subdir)
        safe_makedir(new_direc)
    safe_makedir(os.path.join(outdir_hi, 'f0'))
    safe_makedir(os.path.join(outdir_lo, 'lf0'))

    if cepstra:
        for subdir in ['mag_cc', 'imag_cc', 'real_cc']:
            safe_makedir(os.path.join(outdir_lo, subdir))        
Пример #6
0
    def synth_utt(self, base, synth_type='tune', outstem=''):

        if synth_type == 'test':
            data_dirs = self.test_data_target_dirs
            # lab_dir = self.config['test_lab_dir']
        elif synth_type == 'tune':
            data_dirs = self.tune_data_target_dirs
            # lab_dir = self.config['tune_lab_dir']
        else:
            sys.exit('Unknown synth_type  943957011')

        if not outstem:
            train_condition = make_train_condition_name(self.config)
            synth_condition = self.make_synthesis_condition_name()
            synth_dir = os.path.join(self.config['workdir'],
                                     'synthesis_%s' % (synth_type),
                                     train_condition, synth_condition)
            safe_makedir(synth_dir)

            self.report('               ==== SYNTHESISE %s ====' % (base))
            outstem = os.path.join(synth_dir, base)
        else:
            self.report('               ==== SYNTHESISE %s ====' % (outstem))

        start_time = self.start_clock('Get speech ')
        speech = compose_speech(data_dirs, base, self.stream_list_target, \
                                self.config['datadims_target'])

        ### upsample before standardisation (inefficient, but standardisation rewrites uv values?? TODO: check this)
        nframes, dim = speech.shape
        len_wave = int(self.rate * self.fshift_seconds * nframes)
        speech = resample.upsample(len_wave,
                                   self.rate,
                                   self.fshift_seconds,
                                   speech,
                                   f0_dim=-1,
                                   convention='world')

        if (self.config['standardise_target_data'], True):
            speech = standardise(speech, self.mean_vec_target,
                                 self.std_vec_target)

        #fshift_seconds = (0.001 * self.config['frameshift_ms'])
        #fshift = int(self.config['sample_rate'] * fshift_seconds)

        unit_features = speech

        unit_features = weight(unit_features, self.target_weight_vector)

        #### TEMp!!!!!!
        #unit_features = unit_features[2000:3000, :]

        n_units, _ = unit_features.shape
        self.stop_clock(start_time)

        ### always do greedy search for sample-based selection
        best_path, gen_wave = self.greedy_joint_search(unit_features)

        #print best_path
        #print gen_wave

        if NORMWAVE:

            print 'predenorm stats:'
            print(gen_wave.mean(), gen_wave.std())
            ### denormalise:-
            gen_wave = (gen_wave * self.wave_std
                        ) + self.wave_mean  # gen_wave + self.wave_mean #
            print 'denorm stats:'
            print(gen_wave.mean(), gen_wave.std())

        if self.config['nonlin_wave']:
            gen_wave = mu2lin(gen_wave)

            # print 'linear stats:'
            # print (gen_wave.mean(), gen_wave.std())

        # pylab.plot(gen_wave)
        # pylab.show()

        if self.mode_of_operation == 'stream_weight_balancing':
            self.report('')
            self.report('balancing stream weights -- skip making waveform')
            self.report('')
        else:
            start_time = self.start_clock('Wrtie wave')
            write_wave(gen_wave, outstem + '.wav', self.rate)
            self.stop_clock(start_time)
            self.report('Output wave: %s.wav' % (outstem))
            self.report('')
            self.report('')
Пример #7
0
      
    # ======== process command line ==========

    a = ArgumentParser()
    a.add_argument('-f', dest='feature_dir', required=True)
    a.add_argument('-o', dest='output_dir', required=True)    
    a.add_argument('-N', dest='nfiles', type=int, default=0)  
    a.add_argument('-m', type=int, default=60, help='low dim feature size (compressed mel magnitude spectrum & cepstrum)')  
    a.add_argument('-p', type=int, default=45, help='low dim feature size (compressed mel phase spectra & cepstra)')          
    a.add_argument('-fftlen', type=int, default=1024)          
    a.add_argument('-ncores', type=int, default=0)   
    a.add_argument('-fs', type=int, default=48000)  
    a.add_argument('-pattern', type=str, default='', help='only synthesise files with this substring in their basename')  
    opts = a.parse_args()
    
    safe_makedir(opts.output_dir)
    
    baselist = [basename(fname) for fname in sorted(glob.glob(opts.feature_dir + '/lf0/*.lf0'))]

    #### temp
    # baselist2 = []
    # for base in baselist:
    #     if int(base.replace('hvd_', '')) > 600:
    #         baselist2.append(base)
    # baselist = baselist2


    if opts.pattern:
        baselist = [b for b in baselist if opts.pattern in b]

    if opts.nfiles > 0:
Пример #8
0
# ## this is the training data as regenerated by LSTM trained on it (for target cost):
# streams_dir = '/afs/inf.ed.ac.uk/group/cstr/projects/blizzard_entries/blizzard2017/hybrid_voice/data/predicted_params/train/'

# topoutdir = '/tmp/testpad'

## --------

## HTS style labels used in Blizzard:-
hts_quinphone_regex = '([^~]+)~([^-]+)-([^\+]+)\+([^\=]+)\=([^:]+)'
stream_list = ['mgc', 'lf0']
stream_dims = {'mgc': 60, 'lf0': 1}

for labfname in glob.glob(labdir + '/*.lab'):
    print labfname

    lab = read_label(labfname, hts_quinphone_regex)

    base = basename(labfname)
    for stream in stream_list:
        stream_file = os.path.join(streams_dir, stream, base + '.' + stream)
        if not os.path.isfile(stream_file):
            print 'skip!'
            continue
        speech = get_speech(stream_file, stream_dims[stream])
        speech = reinsert_terminal_silence(speech, lab)

        outdir = topoutdir + '/' + stream
        safe_makedir(outdir)
        put_speech(speech, outdir + '/' + base + '.' + stream)
Пример #9
0
    def synth_utt(self, base, synth_type='tune', outstem='', outdir=''): 

        if synth_type == 'test':
            data_dirs = self.test_data_target_dirs
            lab_dir = self.config.get('test_lab_dir', '') ## default added for pure acoustic epoch case
        elif synth_type == 'tune':
            data_dirs = self.tune_data_target_dirs
            lab_dir = self.config.get('tune_lab_dir', '') ## default added for pure acoustic epoch case
        else:
            sys.exit('Unknown synth_type  9489384')

        if outdir:
            assert not outstem

        if not outstem:
            train_condition = make_train_condition_name(self.config)
            synth_condition = make_synthesis_condition_name(self.config)
            if outdir:
                synth_dir = outdir
            else:
                synth_dir = os.path.join(self.config['workdir'], 'synthesis_%s'%(synth_type), train_condition, synth_condition)
            safe_makedir(synth_dir)
                
            self.report('               ==== SYNTHESISE %s ===='%(base))
            outstem = os.path.join(synth_dir, base)       
        else:
            self.report('               ==== SYNTHESISE %s ===='%(outstem))

        start_time = self.start_clock('Get speech ')
        unnorm_speech = compose_speech(data_dirs, base, self.stream_list_target, \
                                self.config['datadims_target']) 

        if self.config.get('pitch_synchronise_test_data', False):
            unnorm_speech = pitch_synchronise(unnorm_speech, self.stream_list_target, \
                                self.config['datadims_target'])
            #unnorm_speech = unnorm_speech_b

        m,dim = unnorm_speech.shape

        speech = standardise(unnorm_speech, self.mean_vec_target, self.std_vec_target)         
            

        if self.config.get('REPLICATE_IS2018_EXP', False):
            unit_features = speech[1:-1, :]  
        else:
            unit_features = speech

        unit_features = weight(unit_features, self.target_weight_vector)       
        n_units, _ = unit_features.shape
        self.stop_clock(start_time)

        if hasattr(self, 'target_truncation_vector'):
            print 'truncate target streams...'
            print unit_features.shape
            unit_features = unit_features[:, self.target_truncation_vector]
            #print unit_features.shape
            #sys.exit('wewevws000')


        if self.config.get('debug_with_adjacent_frames', False):
            print 'Concatenate naturally contiguous units to debug concatenation!'
            assert not self.config.get('magphase_use_target_f0', True), 'set magphase_use_target_f0 to False for using debug_with_adjacent_frames'
            multiepoch = self.config.get('multiepoch', 1)
            if multiepoch > 1:
                best_path = np.arange(0,500, multiepoch)
            else:
                best_path = np.arange(500)

        else:
            assert self.config['greedy_search']
            assert self.config.get('target_representation') == 'epoch'
            best_path = self.greedy_joint_search(unit_features)


        if self.mode_of_operation == 'stream_weight_balancing':
            self.report( '\n\n balancing stream weights -- skip making waveform \n\n')
        else:
            PRELOAD_UTTS = False  ### !TODO?
            if PRELOAD_UTTS:
                start_time = self.start_clock('Preload magphase utts for sentence')
                self.preload_magphase_utts(best_path)
                self.stop_clock(start_time) 

            start_time = self.start_clock('Extract and join units')
            
            if self.config.get('store_full_magphase_sep_files', False):
                assert self.config['target_representation'] == 'epoch'
                target_fz = unnorm_speech[:,-1]  ## TODO: unhardcode position and lf0!
                target_fz = np.exp(target_fz)
                magphase_overlap = self.config.get('magphase_overlap', 0)


                if self.config.get('magphase_use_target_f0', True):
                    self.concatenateMagPhaseEpoch_sep_files(best_path, outstem + '.wav', fzero=target_fz, overlap=magphase_overlap)                
                else:
                    self.concatenateMagPhaseEpoch_sep_files(best_path, outstem + '.wav', overlap=magphase_overlap)                

            elif self.config.get('store_full_magphase', False):
                target_fz = unnorm_speech[:,-1]
                target_fz = np.exp(target_fz)
                self.concatenateMagPhaseEpoch(best_path, outstem + '.wav', fzero=target_fz)
            else:
                sys.exit('only support store_full_magphase_sep_files / store_full_magphase')
            self.stop_clock(start_time)          
            self.report( 'Output wave: %s.wav\n\n'%(outstem ))

        if self.mode_of_operation == 'stream_weight_balancing':
            tscores = self.get_target_scores_per_stream(unit_features, best_path)
            jscores = self.get_join_scores_per_stream(best_path)
            return (tscores, jscores)

        if self.config['get_selection_info']:
            trace_lines = self.get_path_information_epoch(unit_features, best_path)
            writelist(trace_lines, outstem + '.trace.txt')
            print 'Wrote trace file %s'%(outstem + '.trace.txt')