Пример #1
0
 def sample_structure(self, mu, v):
     if self.sigma_type == 'const':
         vv = self.sigma * torch.ones(mu.size())
     else:
         vv = v
     sample = sample_gaussian(mu, vv)
     return sample
Пример #2
0
    def compute_nelbo(self, x):
        # encode x and draw sample
        mu_z, var_z = self.enc(x)
        z = ut.sample_gaussian(mu_z, var_z)
        mu_x, var_x = self.dec(z)

        dkl = ut.kl_normal(mu_z, var_z, self.prior_mu, self.prior_var)
        recon = -ut.log_normal(x, mu_x, var_x)
        nelbo = dkl + recon
        return nelbo.mean(), dkl.mean(), recon.mean()
Пример #3
0
    def _initialize_vars(self):
        hidden_p = tf.nn.sigmoid(tf.matmul(self.x, self.w) + self.hidden_bias)
        visible_recon_p = tf.matmul(sample_bernoulli(hidden_p),
                                    tf.transpose(self.w)) + self.visible_bias

        if self.sample_visible:
            visible_recon_p = sample_gaussian(visible_recon_p, self.sigma)

        hidden_recon_p = tf.nn.sigmoid(
            tf.matmul(visible_recon_p, self.w) + self.hidden_bias)

        positive_grad = tf.matmul(tf.transpose(self.x), hidden_p)
        negative_grad = tf.matmul(tf.transpose(visible_recon_p),
                                  hidden_recon_p)

        def f(x_old, x_new):
            return self.momentum * x_old +\
                   self.learning_rate * x_new * (1 - self.momentum) / tf.to_float(tf.shape(x_new)[0])

        delta_w_new = f(self.delta_w, positive_grad - negative_grad)
        delta_visible_bias_new = f(self.delta_visible_bias,
                                   tf.reduce_mean(self.x - visible_recon_p, 0))
        delta_hidden_bias_new = f(self.delta_hidden_bias,
                                  tf.reduce_mean(hidden_p - hidden_recon_p, 0))

        update_delta_w = self.delta_w.assign(delta_w_new)
        update_delta_visible_bias = self.delta_visible_bias.assign(
            delta_visible_bias_new)
        update_delta_hidden_bias = self.delta_hidden_bias.assign(
            delta_hidden_bias_new)

        update_w = self.w.assign(self.w + delta_w_new)
        update_visible_bias = self.visible_bias.assign(self.visible_bias +
                                                       delta_visible_bias_new)
        update_hidden_bias = self.hidden_bias.assign(self.hidden_bias +
                                                     delta_hidden_bias_new)

        self.update_deltas = [
            update_delta_w, update_delta_visible_bias, update_delta_hidden_bias
        ]
        self.update_weights = [
            update_w, update_visible_bias, update_hidden_bias
        ]

        self.compute_hidden = tf.nn.sigmoid(
            tf.matmul(self.x, self.w) + self.hidden_bias)
        self.compute_visible = tf.matmul(
            self.compute_hidden, tf.transpose(self.w)) + self.visible_bias
        self.compute_visible_from_hidden = tf.matmul(
            self.y, tf.transpose(self.w)) + self.visible_bias
Пример #4
0
 def sample_x_from_z(self, z):
     mu, var = self.dec(z)
     return ut.sample_gaussian(mu, var), mu
Пример #5
0
 def sample_z(self, num_samples):
     return ut.sample_gaussian(self.prior_mu.expand(num_samples, -1),
                               self.prior_var.expand(num_samples, -1))
Пример #6
0
 def sample_z_from_x(self, x):
     return ut.sample_gaussian(*self.enc(x))
Пример #7
0
    def _initialize_vars(self):
        self.dropout_rate = tf.placeholder(tf.float32,
                                           shape=(),
                                           name="dropout_rate")  ###dropout

        hidden_mf = tf.matmul(self.x, self.w) + self.hidden_bias
        hidden_p = tf.nn.sigmoid(hidden_mf)
        hidden_act = self.sample_relu(hidden_mf, hidden_p)

        #        dropout_cte = tf.nn.dropout(tf.ones_like(hidden_mf), self.dropout_rate)###dropout
        #        hidden_act = tf.multiply(hidden_act, dropout_cte)###dropout

        visible_recon_p = tf.matmul(hidden_act, tf.transpose(
            self.w)) + self.visible_bias
        visible_recon_act = sample_gaussian(visible_recon_p, self.sigma)

        hidden_recon_mf = tf.matmul(visible_recon_act,
                                    self.w) + self.hidden_bias
        hidden_recon_p = tf.nn.sigmoid(hidden_recon_mf)
        hidden_recon_act = self.sample_relu(hidden_recon_mf, hidden_recon_p)

        positive_grad = tf.matmul(tf.transpose(
            self.x), hidden_act) / tf.to_float(tf.shape(self.x)[0])
        #        negative_grad = tf.matmul(tf.transpose(visible_recon_act), hidden_recon_act)/tf.to_float(tf.shape(self.x)[0])
        negative_grad = tf.matmul(tf.transpose(visible_recon_p),
                                  hidden_recon_act) / tf.to_float(
                                      tf.shape(self.x)[0])

        def f(x_old, x_new):
            return self.momentum * x_old +\
                   self.learning_rate_ph * x_new * (1 - self.momentum)

        delta_w_new = f(
            self.delta_w, positive_grad -
            negative_grad) - self.learning_rate_ph * self.l1 * tf.abs(self.w)
        #        delta_visible_bias_new = f(self.delta_visible_bias, tf.reduce_mean(self.x - visible_recon_act, 0))/128 #+ self.learning_rate_ph*self.l1*tf.abs(self.visible_bias)
        #        delta_hidden_bias_new = f(self.delta_hidden_bias, tf.reduce_mean(hidden_p - hidden_recon_p, 0))/128 #+ self.learning_rate_ph*self.l1*tf.abs(self.hidden_bias)

        #        delta_visible_bias_new = f(self.delta_visible_bias, tf.reduce_mean(self.x - visible_recon_act, 0))#/128 #+ self.learning_rate_ph*self.l1*tf.abs(self.visible_bias)
        delta_visible_bias_new = f(
            self.delta_visible_bias, tf.reduce_mean(
                self.x - visible_recon_p,
                0))  #+ self.learning_rate_ph*self.l1*tf.abs(self.visible_bias)
        delta_hidden_bias_new = f(
            self.delta_hidden_bias,
            tf.reduce_mean(
                hidden_act - hidden_recon_act,
                0))  # + self.learning_rate_ph*self.l1*tf.abs(self.hidden_bias)
        #hidden_act
        update_delta_w = self.delta_w.assign(delta_w_new)
        update_delta_visible_bias = self.delta_visible_bias.assign(
            delta_visible_bias_new)
        update_delta_hidden_bias = self.delta_hidden_bias.assign(
            delta_hidden_bias_new)

        update_w = self.w.assign(self.w + delta_w_new)
        update_visible_bias = self.visible_bias.assign(self.visible_bias +
                                                       delta_visible_bias_new)
        update_hidden_bias = self.hidden_bias.assign(self.hidden_bias +
                                                     delta_hidden_bias_new)

        self.update_deltas = [
            update_delta_w, update_delta_visible_bias, update_delta_hidden_bias
        ]
        with tf.control_dependencies(self.update_deltas):
            self.update_weights = [
                update_w, update_visible_bias, update_hidden_bias
            ]

        if self.train_sigma:
            delta_sigma_new = 0.01 * f(
                self.delta_sigma,
                tf.reduce_mean(
                    (self.x**2 - visible_recon_p**2 + 2 * self.visible_bias *
                     (visible_recon_p - self.x)) / (self.sigma), 0, False))

            update_delta_sigma = self.delta_sigma.assign(delta_sigma_new)
            update_sigma = self.sigma.assign(self.sigma + delta_sigma_new)

            self.update_deltas += [update_delta_sigma]
            self.update_weights += [update_sigma]

        self.compute_hidden = tf.nn.relu(
            tf.matmul(self.x, self.w) + self.hidden_bias)
        self.compute_visible = tf.matmul(
            self.compute_hidden, tf.transpose(self.w)) + self.visible_bias
        self.compute_visible_from_hidden = tf.matmul(
            self.y, tf.transpose(self.w)) + self.visible_bias

        self.features = self.compute_hidden
        self.featuresv2 = tf.nn.relu(tf.matmul(self.x, self.w))
        self.featuresv3 = tf.nn.sigmoid(
            tf.matmul(self.x, self.w) + self.hidden_bias)
        self.featuresv4 = tf.matmul(self.x, self.w)

        #        self.fix_hidden = self.hidden_bias.assign(0.1*(-1/2) + 0.1*1*(self.hidden_bias - tf.reduce_min(self.hidden_bias))/(tf.reduce_max(self.hidden_bias)-tf.reduce_min(self.hidden_bias)))
        self.fix_hidden = self.hidden_bias.assign(-0.05 + 0.1 * (
            (-1 / 2) + (self.hidden_bias - tf.reduce_min(self.hidden_bias)) /
            (tf.reduce_max(self.hidden_bias) - tf.reduce_min(self.hidden_bias))
        ))
        self.restart_hidden = self.hidden_bias.assign(
            0.5 * tf.ones_like(self.hidden_bias))