Пример #1
0
 def pop_card_from_list(self, card_id: str, location: List[Card]):
     card = util.shrink([card for card in location if card.id == card_id])
     other_cards = [card for card in location if card.id != card_id]
     location.clear()
     for other_card in other_cards:
         location.append(other_card)
     return card
Пример #2
0
 def reject_trade(self, player: Player, trade_id: str):
     trade: Trade = util.shrink([trade for trade in self.trades if trade.id == trade_id])
     if not trade:
         return util.error("Trade does not exist")
     if player is not trade.p2:
         return util.error("You are not in this trade")
     # Remove trade from trades
     self.trades = [trade for trade in self.trades if trade.id != trade_id]
     return util.success("Trade successfully rejected")
Пример #3
0
 def create_trade(self, p1: Player, p2_name: str, card_ids: List[str], wants: List[str]):
     tcs: List[TradingCard] = self.ids_to_tcs(p1, card_ids)
     new_trades: List[Trade] = []
     p2: Player = util.shrink([player for player in self.players if player.name == p2_name])
     if not p2:
         return util.error("Player chosen is not in game")
     new_trades += [Trade(p1, p2, tcs, wants)]
     self.trades += new_trades
     return util.success('Successfully created trade')
Пример #4
0
 def accept_trade(self, player: Player, trade_id: str, card_ids: List[str]):
     tcs: List[TradingCard] = self.ids_to_tcs(player, card_ids)
     trade: Trade = util.shrink([trade for trade in self.trades if trade.id == trade_id])
     if not trade:
         return util.error("Trade does not exist")
     if player is not trade.p2:
         return util.error("You are not in this trade")
     result = trade.accept(tcs)
     if not result.get('error'):
         self.trades = [trade for trade in self.trades if trade.id != trade_id]
     return result
Пример #5
0
def access() -> Dict:
    '''
    Checks if request has a cookie of a logged in user. If cookie exists it
    sends user their game info. If not, it takes them to the login page.
    '''
    cookie: str = request.cookies.get('tbg_token')
    try:
        game_id: str = clients[cookie]
    except KeyError:
        abort(400, util.error('Access denied'))
    if games[game_id].status == 'Completed':
        abort(400, util.error('Game already completed'))
    player: Player = util.shrink([
        player for player in games[game_id].players
        if player.token == request.cookies.get('tbg_token')
    ])
    return jsonify({'game': game_id, "player_name": player.name})
Пример #6
0
def login() -> Dict:
    '''
    Adds user to the requested game as long as game isn't full or already started,
    game exists, and user name isn't already used in game.
    '''
    post_data: Dict = request.get_json()
    try:
        name: str = post_data['name']
        game_id: str = post_data['game']
    except KeyError:
        abort(400, util.error('Incorrect JSON data'))

    # Get first public game
    game: Game = util.shrink([
        games[game_id] for game_id in games
        if games[game_id].game_type == 'public'
    ])

    # If game game_id isn't a blank string, use that game
    if game_id in games:
        game = games[game_id]

    if name in [player.name for player in game.players]:
        abort(400, util.error('User already exists with that name'))
    if game.status != 'Awaiting':
        abort(400, util.error('Game has already started or ended'))
    if game.is_full():
        abort(400, util.error('Game is full'))

    player: Player = Player(name)
    game.add_player(player)
    clients[player.token] = game_id
    response = make_response(
        jsonify(util.success('Successfully logged into game')))
    response.set_cookie('tbg_token', player.token, max_age=6000)
    update_client(game)
    return response
Пример #7
0
def run():
    for epoch in range(config.epoch):
        print(epoch)
        while config.input_dim + 1 <= len(config.columns):
            current_feature_name = config.columns[config.input_dim]
            textLoader = DataLoader(text,
                                    batch_size=config.batch_size,
                                    shuffle=True,
                                    num_workers=config.num_workers,
                                    drop_last=config.drop_last)
            model = netLSTM_withbn()
            with torch.no_grad():
                model = model.cuda()
            net_enn_train = enn.ENN(model, NE)
            # If pre_existent epoch found, set net_enn_train parameters with pre_existent epoch record.
            # Only processed if current epoch count is 0
            epoch_list = [
                i for i in os.listdir(PATH) if i.startswith(
                    "parameters_{}_epoch_".format(current_feature_name))
            ]
            if len(epoch_list) > 0 and epoch == 0:
                print("Pre_existent epoch found: {}".format(
                    sorted(epoch_list)[-1]))
                epoch_pre_existent = pickle.load(
                    open(os.path.join(PATH,
                                      sorted(epoch_list)[-1]), 'rb'))
                net_enn_train.set_parameter(epoch_pre_existent)
            if epoch > 0:
                parameter_path = os.path.join(
                    PATH,
                    "parameters_{}_epoch_{}".format(current_feature_name,
                                                    epoch - 1))
                print("Setting checkpoint {}".format(parameter_path))
                parameter_checkpoint = pickle.load(open(parameter_path, 'rb'))
                net_enn_train.set_parameter(parameter_checkpoint)
            for i, data in enumerate(textLoader):
                print('#' * 30)
                print("{}: batch{}".format(time.strftime('%Y%m%d_%H_%M_%S'),
                                           i))
                # preparing the train data
                input_, target = data
                input_ = torch.from_numpy(
                    np.stack(list(shrink(input_, config.shrink_len)), axis=1))
                target = torch.from_numpy(
                    np.stack(list(shrink(target, config.shrink_len)), axis=1))
                with torch.no_grad():
                    input_, target = map(Variable,
                                         (input_.float(), target.float()))
                    target = target.reshape(-1, config.output_dim)
                    input_ = input_.cuda()
                    target = target.cuda()
                # train the model
                net_enn_train, loss, pred_data = train(
                    net_enn_train,
                    input_,
                    target,
                    feature_name=current_feature_name)
            with torch.no_grad():
                params = net_enn_train.get_parameter()
                filename = PATH + "/parameters_{}_epoch_{}".format(
                    current_feature_name, epoch)
                save_var(params, filename)
                del params
            test(net_enn_train,
                 feature_name=current_feature_name,
                 draw_result=(epoch == config.epoch - 1))
            config.input_dim += 1
            text.reset_train_dataset()
        config.input_dim -= 3
        text.reset_train_dataset()
        text.reset_test_dataset()
Пример #8
0
    indices1 = np.where(scores1 > score_threshold1)[0]
    scores1 = scores1[indices1]
    boxes_pred1 = boxes_pred1[indices1]
    boxes_pred1, scores1 = util.nms(boxes_pred1, scores1, nms_threshold)

    indices2 = np.where(scores2 > score_threshold2)[0]
    scores2 = scores2[indices2]
    boxes_pred2 = boxes_pred2[indices2]
    boxes_pred2, scores2 = util.nms(boxes_pred2, scores2, nms_threshold)

    boxes_pred = np.concatenate((boxes_pred1, boxes_pred2))
    scores = np.concatenate((scores1, scores2))

    boxes_pred, scores = util.averages(boxes_pred, scores, wt_overlap,
                                       solo_min)
    util.shrink(boxes_pred, shrink_factor)

    output = ''
    for j, bb in enumerate(boxes_pred):
        x1 = int(bb[0])
        y1 = int(bb[1])
        w = int(bb[2] - x1 + 1)
        h = int(bb[3] - y1 + 1)
        output += f'{scores[j]:.3f} {x1} {y1} {w} {h} '
    test_ids.append(fid)
    test_outputs.append(output)
print()
end = time.time()
# print execution time
print(f"Elapsed time = {end-start:.3f} seconds")