def go_cmp(binary=False):
    b = board
    if not b.turn:
        b = b.mirror()

    legal_moves = list(b.legal_moves)
    best_move = legal_moves[0]

    for _ in range(5):
        for mv in legal_moves:
            if mv is best_move:
                continue
            b.push(best_move)
            best = util.state_to_cnn(util.board_to_state(b))
            b.pop()
            b.push(mv)
            comp = util.state_to_cnn(util.board_to_state(b))
            b.pop()
            with torch.no_grad():
                model.train()
                t = torch.tensor(np.array([best, comp]),
                                 dtype=torch.float).to(device)
                x = model(t).detach().cpu()

                if not binary and x[0].argmax() < 10:
                    best_move = mv
                elif binary and x[0] > 0:
                    best_move = mv
    uci = best_move.uci()

    if not board.turn:
        uci = util.flip_uci(uci)

    print("bestmove " + uci)
def go_state(mode='buckets'):
    global board
    b = board
    if not board.turn:
        b = board.mirror()

    moves = list(b.legal_moves)
    cnn = []
    for mv in moves:
        b.push(mv)
        state = util.board_to_state(b)
        cnn.append(util.state_to_cnn(state))
        b.pop()
    model.train()
    with torch.no_grad():
        y = model(torch.tensor(cnn, dtype=torch.float, device=device)).detach()
        idx = 0
        if mode is 'buckets':
            idx = y.argmax(dim=1).argmax(dim=0).cpu().numpy()
        elif mode is 'value':
            idx = y.argmax().cpu().numpy()

        uci = moves[idx].uci()

        if not board.turn:
            uci = util.flip_uci(uci)

        print("bestmove " + uci)
Пример #3
0
    def precompute(self):
        with open("data/depth18_gamma0.200000/moves_%s.csv" % (self.mode),
                  "r") as csv_file:
            r = csv.reader(csv_file)
            self.n_items = 0

            self.cnn = []
            self.cp_loss = []
            self.mask = []
            self.legal_mask = []
            self.num_of_splits = 0

            print('Loading data...')
            for fen_without_count, dstr in progressbar.progressbar(r):
                cpdict = ast.literal_eval(dstr)
                fen = fen_without_count + " 0 1"
                board = chess.Board(fen=fen)
                state = util.board_to_state(board)
                legal_mask = util.movelist_to_actionmask(board.legal_moves)
                cnn = util.state_to_cnn(state)
                cp_loss, mask = util.cpdict_to_loss_mask(cpdict)

                self.cnn.append(cnn)
                self.cp_loss.append(cp_loss)
                self.mask.append(mask)
                self.legal_mask.append(legal_mask)
                self.n_items += 1
                if self.n_items % 10000 == 0:
                    self.save_precomputed()
            self.save_precomputed()
def random_move(boards, p_dict):
    cnn_t = torch.zeros(n_par_games,
                        17,
                        8,
                        8,
                        dtype=torch.float,
                        device=device)
    mask_t = torch.zeros(n_par_games,
                         64 * 64,
                         dtype=torch.float,
                         device=device)
    fen_without_count = [None for _ in boards]
    for i, b in enumerate(boards):
        turn = b.turn
        #p = None
        #fen_without_count[i] = ' '.join(board.fen().split()[:-2])
        #if fen_without_count[i] in p_dict.keys():
        #    p = p_dict[fen_without_count[i]]
        if not turn:
            b = b.mirror()
        state = util.board_to_state(b)
        cnn = util.state_to_cnn(state)
        cnn_t[i] = torch.tensor(cnn).to(device)
        mask_t[i] = torch.tensor(util.movelist_to_actionmask(b.legal_moves),
                                 dtype=torch.float,
                                 device=device)

    y = model(cnn_t).detach()
    y_masked = torch.nn.functional.softmax(y, dim=1) * mask_t
    y_masked = torch.nn.functional.normalize(y_masked, p=1)

    p = y_masked.cpu().numpy()

    ucis = []
    for i, b in enumerate(boards):
        #p_dict[fen_without_count[i]] = p[i]
        idx = np.random.choice(64 * 64, p=p[i])

        uci = util.idx_to_uci(idx)

        if not b.turn:
            uci = util.flip_uci(uci)

        try:
            b.push_uci(uci)
            b.pop()
        except:
            uci += np.random.choice(['q', 'r', 'b', 'n'])

        ucis.append(uci)
    return ucis
Пример #5
0
 def __init__(self):
     super(ChessMoveDataset_cp,self).__init__()
     with open("data/depth18_gamma0.200000/moves.csv", "r") as csv_file:
         r = csv.reader(csv_file)
         data = []
         print('Loading data...')
         for fen_without_count,dstr in progressbar.progressbar(r):
             cpdict = ast.literal_eval(dstr)
             fen = fen_without_count + " 0 1"
             state = util.board_to_state(chess.Board(fen=fen))
             cnn = util.state_to_cnn(state)
             cp_loss,mask = util.cpdict_to_loss_mask(cpdict)
             data.append((cnn,cp_loss,mask))
         self.data = np.array(data)
Пример #6
0
    def __iter__(self):
        it = None
        worker_info = torch.utils.data.get_worker_info()
        if worker_info is None:
            it = range(0,self.num_of_splits,1)
        else:
            worker_id = worker_info.id
            num_workers = worker_info.num_workers
            it = range(worker_id, self.num_of_splits, num_workers)
        
        for idx in it:
            b = np.load('data/pre_pov/boards_%s_%d.npy'%(self.mode,idx))
            m = np.load('data/pre_pov/moves_%s_%d.npy'%(self.mode,idx))

            for j in range(len(b)):
                yield torch.tensor(util.state_to_cnn(b[j]),dtype=torch.float) ,torch.tensor(m[j], dtype=torch.long)
Пример #7
0
    def precompute(self):
        with open("data/depth18_gamma0.200000/moves_statevalue_%s.csv"%(self.mode), "r") as csv_file:
            r = csv.reader(csv_file)
            self.n_items = 0

            self.cnn = []
            self.values = []
            self.num_of_splits = 0

            print('Loading data...')
            for fen,value in progressbar.progressbar(r):
                board = chess.Board(fen=fen)
                state = util.board_to_state(board)
                cnn = util.state_to_cnn(state)

                self.cnn.append(cnn)
                self.values.append(int(value))
                self.n_items += 1
                if self.n_items % 10000 == 0:
                    self.save_precomputed()
            self.save_precomputed()
def go():
    global board
    b = board
    if not board.turn:
        b = board.mirror()
    state = util.board_to_state(b)
    cnn = util.state_to_cnn(state)

    model.train()
    with torch.no_grad():
        d = {}
        for _ in range(100):
            y = model(
                torch.tensor(cnn, dtype=torch.float,
                             device=device).unsqueeze(0)).detach()
            y = y - y.min()
            y_masked = y.cpu().numpy() * util.movelist_to_actionmask(
                b.legal_moves)
            uci = util.action_to_uci(y_masked)

            if not board.turn:
                uci = util.flip_uci(uci)

            try:
                board.push_uci(uci)
                board.pop()
            except:
                uci += 'q'
            if uci not in d.keys():
                d[uci] = 1
            else:
                d[uci] += 1

        maxcount, bestuci = 0, None
        for uci, count in d.items():
            if maxcount < count:
                bestuci = uci
                maxcount = count
        print("bestmove " + uci)