def rotations2_natural_sampled_kfac(num_samples=1): tf.reset_default_graph() np.random.seed(0) tf.set_random_seed(0) # override kr with no-shape-inferring version def kr(A, B): return u.kronecker(A, B, do_shape_inference=False) X0 = np.genfromtxt('data/large_rotations2_X0.csv', delimiter=",") Y0 = np.genfromtxt('data/large_rotations2_Y0.csv', delimiter=",") W0f = v2c_np(np.genfromtxt('data/large_rotations2_W0f.csv', delimiter=",")) fs = np.genfromtxt('data/large_rotations2_fs.csv', delimiter=",").astype(np.int32) n = len(fs) - 2 # number of layers def f(i): return fs[i + 1] # W[i] has shape f[i] x f[i-1] dsize = X0.shape[1] assert f(-1) == dsize # load W0f and do shape checks (can remove) W0s = u.unflatten_np(W0f, fs[1:]) # Wf doesn't have first layer (data matrix) W0s.insert(0, X0) Wf_holder = tf.placeholder(dtype, shape=W0f.shape) Wf = tf.Variable(Wf_holder, name="Wf") Wf_copy = tf.Variable(Wf_holder, name="Wf_copy") init_dict = {Wf_holder: W0f} # Create W's # initialize data + layers # W[0] is input matrix (X), W[n] is last matrix # A[1] has activations for W[1], equal to W[0]=X # A[n+1] has predictions # Create W's W = u.unflatten(Wf, fs[1:]) X = tf.constant(X0) Y = tf.constant(Y0) W.insert(0, X) A = [0] * (n + 2) A2 = [0] * (n + 2) # augmented forward props for natural gradient A[0] = u.Identity(dsize) A2[0] = u.Identity(dsize * num_samples) for i in range(n + 1): # fs is off by 2 from common notation, ie W[0] has shape f[0],f[-1] A[i + 1] = tf.matmul(W[i], A[i], name="A" + str(i + 1)) if i == 0: # replicate dataset multiple times corresponding to number of samples A2[i + 1] = tf.concat([W[0]] * num_samples, axis=1) else: A2[i + 1] = tf.matmul(W[i], A2[i], name="A2" + str(i + 1)) # input dimensions match assert W[0].get_shape() == X0.shape # output dimensions match assert W[-1].get_shape()[0], W[0].get_shape()[1] == Y0.shape assert A[n + 1].get_shape() == Y0.shape err = Y - A[n + 1] loss = tf.reduce_sum(tf.square(err)) / (2 * dsize) # lower learning rate by 10x lr = tf.Variable(0.01, dtype=dtype) # create backprop matrices # B[i] has backprop for matrix i B = [0] * (n + 1) B2 = [0] * (n + 1) B[n] = -err / dsize B2[n] = tf.random_normal((f(n), dsize * num_samples), 0, 1, seed=0, dtype=dtype) for i in range(n - 1, -1, -1): B[i] = tf.matmul(tf.transpose(W[i + 1]), B[i + 1], name="B" + str(i)) B2[i] = tf.matmul(tf.transpose(W[i + 1]), B2[i + 1], name="B2" + str(i)) # Create gradient update. Make copy of variables and split update into # two run calls. Using single set of variables will gives updates that # occasionally produce wrong results/NaN's because of data race dW = [0] * (n + 1) dW2 = [0] * (n + 1) updates1 = [0] * (n + 1) # compute updated value into Wcopy updates2 = [0] * (n + 1) # copy value back into W Wcopy = [0] * (n + 1) for i in range(n + 1): Wi_name = "Wcopy" + str(i) Wi_shape = (fs[i + 1], fs[i]) Wi_init = tf.zeros(dtype=dtype, shape=Wi_shape, name=Wi_name + "_init") Wcopy[i] = tf.Variable(Wi_init, name=Wi_name, trainable=False) dW[i] = tf.matmul(B[i], tf.transpose(A[i]), name="dW" + str(i)) dW2[i] = tf.matmul(B2[i], tf.transpose(A2[i]), name="dW2" + str(i)) del dW[0] # get rid of W[0] update del dW2[0] # get rid of W[0] update # construct flattened gradient update vector dWf = tf.concat([vec(grad) for grad in dW], axis=0) # todo: divide both activations and backprops by size for cov calc # Kronecker factored covariance blocks iblocks = u.empty_grid(n + 1, n + 1) for i in range(1, n + 1): for j in range(1, n + 1): if i == j: acov = A2[i] @ t(A2[j]) / (dsize * num_samples) bcov = B2[i] @ t(B2[j]) / (dsize * num_samples) term = kr(u.pseudo_inverse(acov), u.pseudo_inverse(bcov)) else: term = tf.zeros(shape=(f(i) * f(i - 1), f(j) * f(j - 1)), dtype=dtype) iblocks[i][j] = term # remove leftmost blocks (those are with respect to W[0] which is input) del iblocks[0] for row in iblocks: del row[0] ifisher = u.concat_blocks(iblocks) Wf_copy = tf.Variable(tf.zeros(dtype=dtype, shape=Wf.shape, name="Wf_copy_init"), name="Wf_copy") new_val_matrix = Wf - lr * (ifisher @ dWf) train_op1 = Wf_copy.assign(new_val_matrix) train_op2 = Wf.assign(Wf_copy) sess = tf.Session() sess.run(tf.global_variables_initializer(), feed_dict=init_dict) observed_losses = [] u.reset_time() for i in range(20): loss0 = sess.run(loss) print(loss0) observed_losses.append(loss0) sess.run(train_op1) sess.run(train_op2) u.record_time() u.summarize_time() u.summarize_graph()
def rotations2_newton_kfac(): tf.reset_default_graph() # override kr with no-shape-inferring version def kr(A, B): return u.kronecker(A, B, do_shape_inference=False) X0 = np.genfromtxt('data/large_rotations2_X0.csv', delimiter=",") Y0 = np.genfromtxt('data/large_rotations2_Y0.csv', delimiter=",") W0f = v2c_np(np.genfromtxt('data/large_rotations2_W0f.csv', delimiter=",")) fs = np.genfromtxt('data/large_rotations2_fs.csv', delimiter=",").astype(np.int32) n = len(fs) - 2 # number of layers def f(i): return fs[i + 1] # W[i] has shape f[i] x f[i-1] dsize = X0.shape[1] assert f(-1) == dsize def f(i): return fs[i + 1] # W[i] has shape f[i] x f[i-1] dsize = X0.shape[1] assert f(-1) == dsize # load W0f and do shape checks (can remove) W0s = u.unflatten_np(W0f, fs[1:]) # Wf doesn't have first layer (data matrix) W0s.insert(0, X0) Wf_holder = tf.placeholder(dtype, shape=W0f.shape) Wf = tf.Variable(Wf_holder, name="Wf") Wf_copy = tf.Variable(Wf_holder, name="Wf_copy") init_dict = {Wf_holder: W0f} # Create W's W = u.unflatten(Wf, fs[1:]) X = tf.constant(X0) Y = tf.constant(Y0) W.insert(0, X) for (numpy_W, tf_W) in zip(W0s, W): u.check_equal(numpy_W.shape, u.fix_shape(tf_W.shape)) # Create A's # A[1] == X A = [0] * (n + 2) A[0] = u.Identity(dsize) for i in range(n + 1): A[i + 1] = tf.matmul(W[i], A[i], name="A" + str(i + 1)) assert W[0].get_shape() == X0.shape assert A[n + 1].get_shape() == X0.shape assert A[1].get_shape() == X0.shape err = Y - A[n + 1] loss = tf.reduce_sum(tf.square(err)) / (2 * dsize) lr = tf.Variable(0.1, dtype=dtype, name="learning_rate") # Create B's B = [0] * (n + 1) B[n] = -err / dsize Bn = [0] * (n + 1) # Newton-modified backprop Bn[n] = u.Identity(f(n)) for i in range(n - 1, -1, -1): B[i] = t(W[i + 1]) @ B[i + 1] Bn[i] = t(W[i + 1]) @ Bn[i + 1] # inverse Hessian blocks iblocks = u.empty_grid(n + 1, n + 1) for i in range(1, n + 1): for j in range(1, n + 1): # reuse Hess tensor calculation in order to get off-diag block sizes dummy_term = kr(A[i] @ t(A[j]), Bn[i] @ t(Bn[j])) / dsize if i == j: acov = A[i] @ t(A[j]) bcov = (Bn[i] @ t(Bn[j])) / dsize term = kr(u.pseudo_inverse(acov), u.pseudo_inverse(bcov)) else: term = tf.zeros(shape=dummy_term.get_shape(), dtype=dtype) iblocks[i][j] = term # remove leftmost blocks (those are with respect to W[0] which is input) del iblocks[0] for row in iblocks: del row[0] ihess = u.concat_blocks(iblocks) sess = tf.Session() sess.run(tf.global_variables_initializer(), feed_dict=init_dict) # create dW's dW = [0] * (n + 1) for i in range(n + 1): dW[i] = tf.matmul(B[i], tf.transpose(A[i]), name="dW" + str(i)) del dW[0] # get rid of W[0] update dWf = tf.concat([u.vec(dWi) for dWi in dW], axis=0) Wf_new = Wf - lr * ihess @ dWf train_op1 = Wf_copy.assign(Wf_new) train_op2 = Wf.assign(Wf_copy) observed_losses = [] elapsed_times = [] u.reset_time() for i in range(10): loss0 = sess.run([loss])[0] print(loss0) observed_losses.append(loss0) sess.run(train_op1) sess.run(train_op2) u.record_time() u.summarize_time() u.summarize_graph()
def rotations2_natural_empirical(): tf.reset_default_graph() # override kr with no-shape-inferring version def kr(A, B): return u.kronecker(A, B, do_shape_inference=False) X0 = np.genfromtxt('data/large_rotations2_X0.csv', delimiter=",") Y0 = np.genfromtxt('data/large_rotations2_Y0.csv', delimiter=",") W0f = v2c_np(np.genfromtxt('data/large_rotations2_W0f.csv', delimiter=",")) fs = np.genfromtxt('data/large_rotations2_fs.csv', delimiter=",").astype(np.int32) n = len(fs) - 2 # number of layers def f(i): return fs[i + 1] # W[i] has shape f[i] x f[i-1] dsize = X0.shape[1] assert f(-1) == dsize # load W0f and do shape checks (can remove) W0s = u.unflatten_np(W0f, fs[1:]) # Wf doesn't have first layer (data matrix) W0s.insert(0, X0) Wf_holder = tf.placeholder(dtype, shape=W0f.shape) Wf = tf.Variable(Wf_holder, name="Wf") Wf_copy = tf.Variable(Wf_holder, name="Wf_copy") init_dict = {Wf_holder: W0f} # Create W's # initialize data + layers # W[0] is input matrix (X), W[n] is last matrix # A[1] has activations for W[1], equal to W[0]=X # A[n+1] has predictions # Create W's W = u.unflatten(Wf, fs[1:]) X = tf.constant(X0) Y = tf.constant(Y0) W.insert(0, X) A = [0] * (n + 2) A[0] = u.Identity(dsize) for i in range(n + 1): # fs is off by 2 from common notation, ie W[0] has shape f[0],f[-1] A[i + 1] = tf.matmul(W[i], A[i], name="A" + str(i + 1)) # input dimensions match assert W[0].get_shape() == X0.shape # output dimensions match assert W[-1].get_shape()[0], W[0].get_shape()[1] == Y0.shape assert A[n + 1].get_shape() == Y0.shape err = Y - A[n + 1] loss = tf.reduce_sum(tf.square(err)) / (2 * dsize) lr = tf.Variable(0.000001, dtype=dtype) # create backprop matrices # B[i] has backprop for matrix i B = [0] * (n + 1) B[n] = -err / dsize for i in range(n - 1, -1, -1): B[i] = tf.matmul(tf.transpose(W[i + 1]), B[i + 1], name="B" + str(i)) # Create gradient update. Make copy of variables and split update into # two run calls. Using single set of variables will gives updates that # occasionally produce wrong results/NaN's because of data race dW = [0] * (n + 1) updates1 = [0] * (n + 1) # compute updated value into Wcopy updates2 = [0] * (n + 1) # copy value back into W Wcopy = [0] * (n + 1) for i in range(n + 1): Wi_name = "Wcopy" + str(i) Wi_shape = (fs[i + 1], fs[i]) Wi_init = tf.zeros(dtype=dtype, shape=Wi_shape, name=Wi_name + "_init") Wcopy[i] = tf.Variable(Wi_init, name=Wi_name, trainable=False) dW[i] = tf.matmul(B[i], tf.transpose(A[i]), name="dW" + str(i)) del dW[0] # get rid of W[0] update # construct flattened gradient update vector dWf = tf.concat([vec(grad) for grad in dW], axis=0) # inverse fisher preconditioner grads = tf.concat([u.khatri_rao(A[i], B[i]) for i in range(1, n + 1)], axis=0) fisher = grads @ tf.transpose(grads) / dsize ifisher = u.pseudo_inverse(fisher) Wf_copy = tf.Variable(tf.zeros(dtype=dtype, shape=Wf.shape, name="Wf_copy_init"), name="Wf_copy") new_val_matrix = Wf - lr * (ifisher @ dWf) train_op1 = Wf_copy.assign(new_val_matrix) train_op2 = Wf.assign(Wf_copy) sess = tf.Session() sess.run(tf.global_variables_initializer(), feed_dict=init_dict) observed_losses = [] u.reset_time() for i in range(10): loss0 = sess.run(loss) print(loss0) observed_losses.append(loss0) sess.run(train_op1) sess.run(train_op2) u.record_time() u.summarize_time() u.summarize_graph()
def rotations2_newton_bd(): # override kr with no-shape-inferring version def kr(A, B): return u.kronecker(A, B, do_shape_inference=False) tf.reset_default_graph() X0 = np.genfromtxt('data/large_rotations2_X0.csv', delimiter=",") Y0 = np.genfromtxt('data/large_rotations2_Y0.csv', delimiter=",") W0f = v2c_np(np.genfromtxt('data/large_rotations2_W0f.csv', delimiter=",")) fs = np.genfromtxt('data/large_rotations2_fs.csv', delimiter=",").astype(np.int32) n = len(fs) - 2 # number of layers def f(i): return fs[i + 1] # W[i] has shape f[i] x f[i-1] dsize = X0.shape[1] assert f(-1) == dsize # load W0f and do shape checks (can remove) W0s = u.unflatten_np(W0f, fs[1:]) # Wf doesn't have first layer (data matrix) W0s.insert(0, X0) Wf_holder = tf.placeholder(dtype, shape=W0f.shape) Wf = tf.Variable(Wf_holder, name="Wf") Wf_copy = tf.Variable(Wf_holder, name="Wf_copy") init_dict = {Wf_holder: W0f} # Create W's W = u.unflatten(Wf, fs[1:]) X = tf.constant(X0) Y = tf.constant(Y0) W.insert(0, X) for (numpy_W, tf_W) in zip(W0s, W): u.check_equal(numpy_W.shape, u.fix_shape(tf_W.shape)) # Create A's # A[1] == X A = [0] * (n + 2) A[0] = u.Identity(dsize) for i in range(n + 1): A[i + 1] = tf.matmul(W[i], A[i], name="A" + str(i + 1)) assert W[0].get_shape() == X0.shape assert A[n + 1].get_shape() == X0.shape assert A[1].get_shape() == X0.shape err = Y - A[n + 1] loss = tf.reduce_sum(tf.square(err)) / (2 * dsize) lr = tf.Variable(0.1, dtype=dtype, name="learning_rate") # Create B's B = [0] * (n + 1) B[n] = -err / dsize Bn = [0] * (n + 1) # Newton-modified backprop Bn[n] = u.Identity(f(n)) for i in range(n - 1, -1, -1): B[i] = t(W[i + 1]) @ B[i + 1] Bn[i] = t(W[i + 1]) @ Bn[i + 1] # Create U's U = [list(range(n + 1)) for _ in range(n + 1)] for bottom in range(n + 1): for top in range(n + 1): if bottom > top: prod = u.Identity(f(top)) else: prod = u.Identity(f(bottom - 1)) for i in range(bottom, top + 1): prod = prod @ t(W[i]) U[bottom][top] = prod # Block i, j gives hessian block between layer i and layer j blocks = [list(range(n + 1)) for _ in range(n + 1)] for i in range(1, n + 1): for j in range(1, n + 1): term1 = kr(A[i] @ t(A[j]), Bn[i] @ t(Bn[j])) / dsize if i == j: term2 = tf.zeros((f(i) * f(i - 1), f(i) * f(i - 1)), dtype=dtype) elif i < j: term2 = kr(A[i] @ t(B[j]), U[i + 1][j - 1]) else: term2 = kr(t(U[j + 1][i - 1]), B[i] @ t(A[j])) blocks[i][j] = term1 + term2 @ Kmat(f(j), f(j - 1)) # remove leftmost blocks (those are with respect to W[0] which is input) del blocks[0] for row in blocks: del row[0] ihess = u.concat_blocks(u.block_diagonal_inverse(blocks)) sess = tf.Session() sess.run(tf.global_variables_initializer(), feed_dict=init_dict) # create dW's dW = [0] * (n + 1) for i in range(n + 1): dW[i] = tf.matmul(B[i], tf.transpose(A[i]), name="dW" + str(i)) del dW[0] # get rid of W[0] update dWf = tf.concat([u.vec(dWi) for dWi in dW], axis=0) Wf_new = Wf - lr * ihess @ dWf train_op1 = Wf_copy.assign(Wf_new) train_op2 = Wf.assign(Wf_copy) observed_losses = [] u.reset_time() for i in range(20): loss0 = sess.run([loss])[0] print(loss0) observed_losses.append(loss0) sess.run(train_op1) sess.run(train_op2) u.record_time() u.summarize_time() u.summarize_graph()