Пример #1
0
def makesky_lp(files, nite, wave, number=3, rejectHsigma=None):
    """Make L' skies by carefully treating the ROTPPOSN angle
    of the K-mirror. Uses 3 skies combined (set by number keyword)."""

    # Start out in something like '06maylgs1/reduce/kp/'
    waveDir = os.getcwd() + '/'
    redDir = util.trimdir(os.path.abspath(waveDir + '../') + '/')
    rootDir = util.trimdir(os.path.abspath(redDir + '../') + '/')
    skyDir = waveDir + 'sky_' + nite + '/'
    rawDir = rootDir + 'raw/'

    util.mkdir(skyDir)

    raw = [rawDir + 'n' + str(i).zfill(4) for i in files]
    skies = [skyDir + 'n' + str(i).zfill(4) for i in files]

    _rawlis = skyDir + 'raw.lis'
    _nlis = skyDir + 'n.lis'
    _skyRot = skyDir + 'skyRot.txt'
    _txt = skyDir + 'rotpposn.txt'
    _out = skyDir + 'sky'
    _log = _out + '.log'
    util.rmall([_rawlis, _nlis, _skyRot, _txt, _out, _log])
    util.rmall([sky + '.fits' for sky in skies])

    open(_rawlis, 'w').write('\n'.join(raw) + '\n')
    open(_nlis, 'w').write('\n'.join(skies) + '\n')

    print 'makesky_lp: Getting raw files'
    ir.imcopy('@' + _rawlis, '@' + _nlis, verbose='no')
    ir.hselect('@' + _nlis, "$I,ROTPPOSN", 'yes', Stdout=_skyRot)

    # Read in the list of files and rotation angles
    rotTab = asciidata.open(_skyRot)
    files = rotTab[0].tonumpy()
    angles = rotTab[1].tonumpy()

    # Fix angles to be between -180 and 180
    angles[angles > 180] -= 360.0
    angles[angles < -180] += 360.0

    sidx = np.argsort(angles)

    # Make sorted numarrays
    angles = angles[sidx]
    files = files[sidx]

    f_log = open(_log, 'w')
    f_txt = open(_txt, 'w')

    # Skip the first and last since we are going to
    # average every NN files.
    print 'makesky_lp: Combining to make skies.'
    startIdx = number / 2
    stopIdx = len(sidx) - (number / 2)
    for i in range(startIdx, stopIdx):
        sky = 'sky%.1f' % (angles[i])
        skyFits = skyDir + sky + '.fits'
        util.rmall([skyFits])

        # Take NN images
        start = i - (number / 2)
        stop = start + number
        list = [file for file in files[start:stop]]
        short = [file for file in files[start:stop]]
        angleTmp = angles[start:stop]

        # Make short names
        for j in range(len(list)):
            tmp = (short[j]).rsplit('/', 1)
            short[j] = tmp[len(tmp) - 1]

        print '%s: %s' % (sky, " ".join(short))
        f_log.write('%s:' % sky)
        for j in range(len(short)):
            f_log.write(' %s' % short[j])
        for j in range(len(angleTmp)):
            f_log.write(' %6.1f' % angleTmp[j])
        f_log.write('\n')

        ir.unlearn('imcombine')
        ir.imcombine.combine = 'median'

        if (rejectHsigma == None):
            ir.imcombine.reject = 'none'
            ir.imcombine.nlow = 1
            ir.imcombine.nhigh = 1
        else:
            ir.imcombine.reject = 'sigclip'
            ir.imcombine.lsigma = 100
            ir.imcombine.hsigma = rejectHsigma
            ir.imcombine.zero = 'median'

        ir.imcombine.logfile = ''
        ir.imcombine(','.join(list), skyFits)

        ir.hedit(skyFits,
                 'SKYCOMB',
                 '%s: %s' % (sky, ' '.join(short)),
                 add='yes',
                 show='no',
                 verify='no')

        f_txt.write('%13s %8.3f\n' % (sky, angles[i]))

    f_txt.close()
    f_log.close()
Пример #2
0
def makesky_fromsci(files, nite, wave):
    """Make short wavelength (not L-band or longer) skies."""

    # Start out in something like '06maylgs1/reduce/kp/'
    waveDir = os.getcwd() + '/'
    redDir = util.trimdir(os.path.abspath(waveDir + '../') + '/')
    rootDir = util.trimdir(os.path.abspath(redDir + '../') + '/')
    skyDir = waveDir + 'sky_' + nite + '/'
    rawDir = rootDir + 'raw/'

    util.mkdir(skyDir)
    print 'sky dir: ', skyDir
    print 'wave dir: ', waveDir

    skylist = skyDir + 'skies_to_combine.lis'
    output = skyDir + 'sky_' + wave + '.fits'

    util.rmall([skylist, output])

    nn = [skyDir + 'n' + str(i).zfill(4) for i in files]
    nsc = [skyDir + 'scale' + str(i).zfill(4) for i in files]
    skies = [rawDir + 'n' + str(i).zfill(4) for i in files]

    for ii in range(len(nn)):
        ir.imdelete(nn[ii])
        ir.imdelete(nsc[ii])
        ir.imcopy(skies[ii], nn[ii], verbose="no")

    # Make list for combinng. Reset the skyDir to an IRAF variable.
    ir.set(skydir=skyDir)
    f_on = open(skylist, 'w')
    for ii in range(len(nn)):
        nn_new = nn[ii].replace(skyDir, "skydir$")
        f_on.write(nn_new + '\n')
    f_on.close()

    # Calculate some sky statistics, but reject high (star-like) pixels
    sky_mean = np.zeros([len(skies)], dtype=float)
    sky_std = np.zeros([len(skies)], dtype=float)

    text = ir.imstat("@" + skylist,
                     fields='midpt,stddev',
                     nclip=10,
                     lsigma=10,
                     usigma=3,
                     format=0,
                     Stdout=1)

    for ii in range(len(nn)):
        fields = text[ii].split()
        sky_mean[ii] = float(fields[0])
        sky_std[ii] = float(fields[1])

    sky_mean_all = sky_mean.mean()
    sky_std_all = sky_std.mean()

    # Upper threshold above which we will ignore pixels when combining.
    hthreshold = sky_mean_all + 3.0 * sky_std_all

    ir.imdelete(output)
    ir.unlearn('imcombine')
    ir.imcombine.combine = 'median'
    ir.imcombine.reject = 'sigclip'
    ir.imcombine.mclip = 'yes'
    ir.imcombine.hsigma = 2
    ir.imcombine.lsigma = 10
    ir.imcombine.hthreshold = hthreshold

    ir.imcombine('@' + skylist, output)
Пример #3
0
def makesky(files, nite, wave, skyscale=1):
    """Make short wavelength (not L-band or longer) skies."""

    # Start out in something like '06maylgs1/reduce/kp/'
    waveDir = os.getcwd() + '/'
    redDir = util.trimdir(os.path.abspath(waveDir + '../') + '/')
    rootDir = util.trimdir(os.path.abspath(redDir + '../') + '/')
    skyDir = waveDir + 'sky_' + nite + '/'
    rawDir = rootDir + 'raw/'

    util.mkdir(skyDir)
    print 'sky dir: ', skyDir
    print 'wave dir: ', waveDir

    skylist = skyDir + 'skies_to_combine.lis'
    output = skyDir + 'sky_' + wave + '.fits'

    util.rmall([skylist, output])

    nn = [skyDir + 'n' + str(i).zfill(4) for i in files]
    nsc = [skyDir + 'scale' + str(i).zfill(4) for i in files]
    skies = [rawDir + 'n' + str(i).zfill(4) for i in files]

    for ii in range(len(nn)):
        ir.imdelete(nn[ii])
        ir.imdelete(nsc[ii])
        ir.imcopy(skies[ii], nn[ii], verbose="no")

    # scale skies to common median
    if skyscale:
        _skylog = skyDir + 'sky_scale.log'
        util.rmall([_skylog])
        f_skylog = open(_skylog, 'w')

        sky_mean = np.zeros([len(skies)], dtype=float)

        for i in range(len(skies)):
            text = ir.imstat(nn[i],
                             fields='mean',
                             nclip=4,
                             lsigma=10,
                             usigma=10,
                             format=0,
                             Stdout=1)
            sky_mean[i] = float(text[0])

        sky_all = sky_mean.mean()
        sky_scale = sky_all / sky_mean

        for i in range(len(skies)):
            ir.imarith(nn[i], '*', sky_scale[i], nsc[i])

            skyf = nn[i].split('/')
            print('%s   skymean=%10.2f   skyscale=%10.2f' %
                  (skyf[len(skyf) - 1], sky_mean[i], sky_scale[i]))
            f_skylog.write('%s   %10.2f  %10.2f\n' %
                           (nn[i], sky_mean[i], sky_scale[i]))

        # Make list for combinng
        f_on = open(skylist, 'w')
        f_on.write('\n'.join(nsc) + '\n')
        f_on.close()

        #skylist = skyDir + 'scale????.fits'
        f_skylog.close()
    else:
        # Make list for combinng
        f_on = open(skylist, 'w')
        f_on.write('\n'.join(nn) + '\n')
        f_on.close()

        #skylist = skyDir + 'n????.fits'

    ir.imdelete(output)
    ir.unlearn('imcombine')
    ir.imcombine.combine = 'median'
    ir.imcombine.reject = 'none'
    ir.imcombine.nlow = 1
    ir.imcombine.nhigh = 1

    ir.imcombine('@' + skylist, output)
Пример #4
0
def makesky_lp2(files, nite, wave):
    """Make L' skies by carefully treating the ROTPPOSN angle
    of the K-mirror. Uses only 2 skies combined."""

    # Start out in something like '06maylgs1/reduce/kp/'
    waveDir = os.getcwd() + '/'
    redDir = util.trimdir(os.path.abspath(waveDir + '../') + '/')
    rootDir = util.trimdir(os.path.abspath(redDir + '../') + '/')
    skyDir = waveDir + 'sky_' + nite + '/'
    rawDir = rootDir + 'raw/'

    util.mkdir(skyDir)

    raw = [rawDir + 'n' + str(i).zfill(4) for i in files]
    skies = [skyDir + 'n' + str(i).zfill(4) for i in files]

    _rawlis = skyDir + 'raw.lis'
    _nlis = skyDir + 'n.lis'
    _skyRot = skyDir + 'skyRot.txt'
    _txt = skyDir + 'rotpposn.txt'
    _out = skyDir + 'sky'
    _log = _out + '.log'
    util.rmall([_rawlis, _nlis, _skyRot, _txt, _out, _log])
    util.rmall([sky + '.fits' for sky in skies])

    open(_rawlis, 'w').write('\n'.join(raw) + '\n')
    open(_nlis, 'w').write('\n'.join(skies) + '\n')

    print 'makesky_lp: Getting raw files'
    ir.imcopy('@' + _rawlis, '@' + _nlis, verbose='no')
    ir.hselect('@' + _nlis, "$I,ROTPPOSN", 'yes', Stdout=_skyRot)

    # Read in the list of files and rotation angles
    rotTab = asciidata.open(_skyRot)
    files = rotTab[0].tonumpy()
    angles = rotTab[1].tonumpy()

    # Fix angles to be between -180 and 180
    angles[angles > 180] -= 360.0
    angles[angles < -180] += 360.0

    sidx = np.argsort(angles)

    # Make sorted numarrays
    angles = angles[sidx]
    files = files[sidx]

    f_log = open(_log, 'w')
    f_txt = open(_txt, 'w')

    # Skip the first and last since we are going to
    # average every 3 files.
    print 'makesky_lp: Combining to make skies.'
    for i in range(1, len(sidx)):
        angav = (angles[i] + angles[i - 1]) / 2.
        sky = 'sky%.1f' % (angav)
        skyFits = skyDir + sky + '.fits'
        util.rmall([skyFits])

        # Average 2 images
        list = [file for file in files[i - 1:i + 1]]
        short = [file for file in files[i - 1:i + 1]]

        # Make short names
        for j in range(len(list)):
            tmp = (short[j]).rsplit('/', 1)
            short[j] = tmp[len(tmp) - 1]

        print '%s: %s %s' % (sky, short[0], short[1])
        f_log.write('%s: %s %s  %6.1f %6.1f\n' %
                    (sky, short[0], short[1], angles[i - 1], angles[i]))

        ir.unlearn('imcombine')
        ir.imcombine.combine = 'average'
        ir.imcombine.reject = 'none'
        ir.imcombine.nlow = 1
        ir.imcombine.nhigh = 1
        ir.imcombine.logfile = ''
        ir.imcombine(list[1] + ',' + list[0], skyFits)

        ir.hedit(skyFits,
                 'SKYCOMB',
                 '%s: %s %s' % (sky, short[0], short[1]),
                 add='yes',
                 show='no',
                 verify='no')

        f_txt.write('%13s %8.3f\n' % (sky, angav))

    f_txt.close()
    f_log.close()
Пример #5
0
def makesky_lp(files, nite, wave, number=3, rejectHsigma=None):
    """Make L' skies by carefully treating the ROTPPOSN angle
    of the K-mirror. Uses 3 skies combined (set by number keyword)."""

    # Start out in something like '06maylgs1/reduce/kp/'
    waveDir = os.getcwd() + '/'
    redDir = util.trimdir(os.path.abspath(waveDir + '../') + '/')
    rootDir = util.trimdir(os.path.abspath(redDir + '../') + '/')
    skyDir = waveDir + 'sky_' + nite + '/'
    rawDir = rootDir + 'raw/'

    util.mkdir(skyDir)

    raw = [rawDir + 'n' + str(i).zfill(4) for i in files]
    skies = [skyDir + 'n' + str(i).zfill(4) for i in files]
    
    _rawlis = skyDir + 'raw.lis'
    _nlis = skyDir + 'n.lis'
    _skyRot = skyDir + 'skyRot.txt'
    _txt = skyDir + 'rotpposn.txt'
    _out = skyDir + 'sky'
    _log = _out + '.log'
    util.rmall([_rawlis, _nlis, _skyRot, _txt, _out, _log])
    util.rmall([sky + '.fits' for sky in skies])

    open(_rawlis, 'w').write('\n'.join(raw)+'\n')
    open(_nlis, 'w').write('\n'.join(skies)+'\n')

    print 'makesky_lp: Getting raw files'
    ir.imcopy('@' + _rawlis, '@' + _nlis, verbose='no')
    ir.hselect('@' + _nlis, "$I,ROTPPOSN", 'yes', Stdout=_skyRot) 

    # Read in the list of files and rotation angles
    rotTab = asciidata.open(_skyRot)
    files = rotTab[0].tonumpy()
    angles = rotTab[1].tonumpy()

    # Fix angles to be between -180 and 180
    angles[angles > 180] -= 360.0
    angles[angles < -180] += 360.0
    
    sidx = np.argsort(angles)
    
    # Make sorted numarrays
    angles = angles[sidx]
    files = files[sidx]

    f_log = open(_log, 'w')
    f_txt = open(_txt, 'w')

    # Skip the first and last since we are going to 
    # average every NN files.
    print 'makesky_lp: Combining to make skies.'
    startIdx = number / 2
    stopIdx = len(sidx) - (number / 2)
    for i in range(startIdx, stopIdx):
	sky = 'sky%.1f' % (angles[i])
	skyFits = skyDir + sky + '.fits'
	util.rmall([skyFits])

	# Take NN images
        start = i - (number/2)
        stop = start + number
	list = [file for file in files[start:stop]]
	short = [file for file in files[start:stop]]
        angleTmp = angles[start:stop]

	# Make short names
	for j in range(len(list)):
	    tmp = (short[j]).rsplit('/', 1)
	    short[j] = tmp[len(tmp)-1]

	print '%s: %s' % (sky, " ".join(short))
        f_log.write('%s:' % sky)
        for j in range(len(short)):
            f_log.write(' %s' % short[j])
	for j in range(len(angleTmp)):
            f_log.write(' %6.1f' % angleTmp[j])
        f_log.write('\n')

	ir.unlearn('imcombine')
	ir.imcombine.combine = 'median'

        if (rejectHsigma == None):
            ir.imcombine.reject = 'none'
            ir.imcombine.nlow = 1
            ir.imcombine.nhigh = 1
        else:
            ir.imcombine.reject = 'sigclip'
            ir.imcombine.lsigma = 100
            ir.imcombine.hsigma = rejectHsigma
            ir.imcombine.zero = 'median'

	ir.imcombine.logfile = ''
	ir.imcombine(','.join(list), skyFits)
	
	ir.hedit(skyFits, 'SKYCOMB', 
		 '%s: %s' % (sky, ' '.join(short)), 
		 add='yes', show='no', verify='no')
	
	f_txt.write('%13s %8.3f\n' % (sky, angles[i]))
	
    f_txt.close()
    f_log.close()
Пример #6
0
def makesky(files, nite, wave, skyscale=1):
    """Make short wavelength (not L-band or longer) skies."""

    # Start out in something like '06maylgs1/reduce/kp/'
    waveDir = os.getcwd() + '/'
    redDir = util.trimdir(os.path.abspath(waveDir + '../') + '/')
    rootDir = util.trimdir(os.path.abspath(redDir + '../') + '/')
    skyDir = waveDir + 'sky_' + nite + '/'
    rawDir = rootDir + 'raw/'

    util.mkdir(skyDir)
    print 'sky dir: ',skyDir
    print 'wave dir: ',waveDir

    skylist = skyDir + 'skies_to_combine.lis'
    output = skyDir + 'sky_' + wave + '.fits'

    util.rmall([skylist, output])

    nn = [skyDir + 'n' + str(i).zfill(4) for i in files]
    nsc = [skyDir + 'scale' + str(i).zfill(4) for i in files]
    skies = [rawDir + 'n' + str(i).zfill(4) for i in files]

    for ii in range(len(nn)):
        ir.imdelete(nn[ii])
        ir.imdelete(nsc[ii])
        ir.imcopy(skies[ii], nn[ii], verbose="no")


    # scale skies to common median
    if skyscale:
        _skylog = skyDir + 'sky_scale.log'
        util.rmall([_skylog])
        f_skylog = open(_skylog, 'w')

        sky_mean = np.zeros([len(skies)], dtype=float)

        for i in range(len(skies)):
            text = ir.imstat(nn[i], fields='mean', nclip=4, 
                         lsigma=10, usigma=10, format=0, Stdout=1)
            sky_mean[i] = float(text[0])

        sky_all = sky_mean.mean()
        sky_scale = sky_all/sky_mean

        for i in range(len(skies)):
            ir.imarith(nn[i], '*', sky_scale[i], nsc[i])

	    skyf = nn[i].split('/')
	    print('%s   skymean=%10.2f   skyscale=%10.2f' % 
	          (skyf[len(skyf)-1], sky_mean[i],sky_scale[i]))
            f_skylog.write('%s   %10.2f  %10.2f\n' % 
                           (nn[i], sky_mean[i], sky_scale[i]))

        # Make list for combinng
        f_on = open(skylist, 'w')
        f_on.write('\n'.join(nsc) + '\n')
        f_on.close()

        #skylist = skyDir + 'scale????.fits'
        f_skylog.close()
    else:
        # Make list for combinng
        f_on = open(skylist, 'w')
        f_on.write('\n'.join(nn) + '\n')
        f_on.close()

        #skylist = skyDir + 'n????.fits' 

    ir.imdelete(output)
    ir.unlearn('imcombine')
    ir.imcombine.combine = 'median'
    ir.imcombine.reject = 'none'
    ir.imcombine.nlow = 1
    ir.imcombine.nhigh = 1

    ir.imcombine('@' + skylist, output)
Пример #7
0
def makesky_fromsci(files, nite, wave):
    """Make short wavelength (not L-band or longer) skies."""

    # Start out in something like '06maylgs1/reduce/kp/'
    waveDir = os.getcwd() + '/'
    redDir = util.trimdir(os.path.abspath(waveDir + '../') + '/')
    rootDir = util.trimdir(os.path.abspath(redDir + '../') + '/')
    skyDir = waveDir + 'sky_' + nite + '/'
    rawDir = rootDir + 'raw/'

    util.mkdir(skyDir)
    print 'sky dir: ',skyDir
    print 'wave dir: ',waveDir

    skylist = skyDir + 'skies_to_combine.lis'
    output = skyDir + 'sky_' + wave + '.fits'

    util.rmall([skylist, output])

    nn = [skyDir + 'n' + str(i).zfill(4) for i in files]
    nsc = [skyDir + 'scale' + str(i).zfill(4) for i in files]
    skies = [rawDir + 'n' + str(i).zfill(4) for i in files]

    for ii in range(len(nn)):
        ir.imdelete(nn[ii])
        ir.imdelete(nsc[ii])
        ir.imcopy(skies[ii], nn[ii], verbose="no")

    # Make list for combinng. Reset the skyDir to an IRAF variable.
    ir.set(skydir=skyDir)
    f_on = open(skylist, 'w')
    for ii in range(len(nn)):
        nn_new = nn[ii].replace(skyDir, "skydir$")
        f_on.write(nn_new + '\n')
    f_on.close()

    # Calculate some sky statistics, but reject high (star-like) pixels
    sky_mean = np.zeros([len(skies)], dtype=float)
    sky_std = np.zeros([len(skies)], dtype=float)

    text = ir.imstat("@" + skylist, fields='midpt,stddev', nclip=10, 
                     lsigma=10, usigma=3, format=0, Stdout=1)

    for ii in range(len(nn)):
        fields = text[ii].split()
        sky_mean[ii] = float(fields[0])
        sky_std[ii] = float(fields[1])

    sky_mean_all = sky_mean.mean()
    sky_std_all = sky_std.mean()

    # Upper threshold above which we will ignore pixels when combining.
    hthreshold = sky_mean_all + 3.0 * sky_std_all

    ir.imdelete(output)
    ir.unlearn('imcombine')
    ir.imcombine.combine = 'median'
    ir.imcombine.reject = 'sigclip'
    ir.imcombine.mclip = 'yes'
    ir.imcombine.hsigma = 2
    ir.imcombine.lsigma = 10
    ir.imcombine.hthreshold = hthreshold

    ir.imcombine('@' + skylist, output)
Пример #8
0
def makesky_lp2(files, nite, wave):
    """Make L' skies by carefully treating the ROTPPOSN angle
    of the K-mirror. Uses only 2 skies combined."""

    # Start out in something like '06maylgs1/reduce/kp/'
    waveDir = os.getcwd() + '/'
    redDir = util.trimdir(os.path.abspath(waveDir + '../') + '/')
    rootDir = util.trimdir(os.path.abspath(redDir + '../') + '/')
    skyDir = waveDir + 'sky_' + nite + '/'
    rawDir = rootDir + 'raw/'

    util.mkdir(skyDir)

    raw = [rawDir + 'n' + str(i).zfill(4) for i in files]
    skies = [skyDir + 'n' + str(i).zfill(4) for i in files]
    
    _rawlis = skyDir + 'raw.lis'
    _nlis = skyDir + 'n.lis'
    _skyRot = skyDir + 'skyRot.txt'
    _txt = skyDir + 'rotpposn.txt'
    _out = skyDir + 'sky'
    _log = _out + '.log'
    util.rmall([_rawlis, _nlis, _skyRot, _txt, _out, _log])
    util.rmall([sky + '.fits' for sky in skies])

    open(_rawlis, 'w').write('\n'.join(raw)+'\n')
    open(_nlis, 'w').write('\n'.join(skies)+'\n')

    print 'makesky_lp: Getting raw files'
    ir.imcopy('@' + _rawlis, '@' + _nlis, verbose='no')
    ir.hselect('@' + _nlis, "$I,ROTPPOSN", 'yes', Stdout=_skyRot) 

    # Read in the list of files and rotation angles
    rotTab = asciidata.open(_skyRot)
    files = rotTab[0].tonumpy()
    angles = rotTab[1].tonumpy()

    # Fix angles to be between -180 and 180
    angles[angles > 180] -= 360.0
    angles[angles < -180] += 360.0
    
    sidx = np.argsort(angles)
    
    # Make sorted numarrays
    angles = angles[sidx]
    files = files[sidx]

    f_log = open(_log, 'w')
    f_txt = open(_txt, 'w')

    # Skip the first and last since we are going to 
    # average every 3 files.
    print 'makesky_lp: Combining to make skies.'
    for i in range(1, len(sidx)):
        angav = (angles[i] + angles[i-1])/2.
	sky = 'sky%.1f' % (angav)
	skyFits = skyDir + sky + '.fits'
	util.rmall([skyFits])

	# Average 2 images
	list = [file for file in files[i-1:i+1]]
	short = [file for file in files[i-1:i+1]]

	# Make short names
	for j in range(len(list)):
	    tmp = (short[j]).rsplit('/', 1)
	    short[j] = tmp[len(tmp)-1]
	    
	print '%s: %s %s' % (sky, short[0], short[1])
	f_log.write('%s: %s %s  %6.1f %6.1f\n' %
		    (sky, short[0], short[1], 
		     angles[i-1], angles[i]))

	ir.unlearn('imcombine')
	ir.imcombine.combine = 'average'
	ir.imcombine.reject = 'none'
	ir.imcombine.nlow = 1
	ir.imcombine.nhigh = 1
	ir.imcombine.logfile = ''
	ir.imcombine(list[1]+','+list[0], skyFits)
	
	ir.hedit(skyFits, 'SKYCOMB', 
		 '%s: %s %s' % (sky, short[0], short[1]), 
		 add='yes', show='no', verify='no')
	
	f_txt.write('%13s %8.3f\n' % (sky, angav))
	
    f_txt.close()
    f_log.close()