Пример #1
0
def validation(model, val_loader,p3d_mean, p3d_std):
    joint_error = []
    PA_MPJPE = []
    with torch.no_grad():
        model.eval()
        for _, (_, pose3d, _, pose2d, _) in enumerate(val_loader):
            p2d = pose2d.to(DEVICE).float()

            p3d_pred = model(p2d)

            # unnormalize groundtruth pose3d, after unnorm, pelvis = [0,0,0]
            p3d_gt_unnorm = pose3d.cpu().detach().numpy().reshape([BATCHSIZE, -1, 3])
            p3d_pelvis = p3d_gt_unnorm[:, 0, :]
            p3d_pelvis = np.expand_dims(p3d_pelvis, axis=1)
            p3d_pelvis = np.repeat(p3d_pelvis, 17, axis=1)
            p3d_gt_unnorm = p3d_gt_unnorm - p3d_pelvis

            # unnormalize predicted pose3d
            p3d_pred_np = p3d_pred.cpu().detach().numpy().reshape([BATCHSIZE, -1, 3])
            p3d_pred_unnorm = util.unnormalize(pose3d_norm=p3d_pred_np,
                                                mean=p3d_mean,
                                                std=p3d_std,
                                                num_joints=17)

            MPJPE = util.get_error(pose3d_pred=p3d_pred_unnorm, pose3d_gt=p3d_gt_unnorm)
            joint_error.append(MPJPE[0])
            PA_MPJPE.append(MPJPE[1])
    joint_error_mean = np.array(joint_error).mean()
    PA_MPJPE_mean = np.array(PA_MPJPE).mean()
    return joint_error_mean, PA_MPJPE_mean
Пример #2
0
def evaluate(model, dataset, device, filename):

    image, mask, gt = zip(*[dataset[i] for i in range(8)])
    image = torch.stack(image)
    mask = torch.stack(mask)
    gt = torch.stack(gt)
    with torch.no_grad():
        output, _ = model(image.to(device), mask.to(device))
    output = output.to(torch.device('cpu'))
    output_comp = mask * image + (1 - mask) * output

    grid = make_grid(
        torch.cat((unnormalize(image), mask, unnormalize(output),
                   unnormalize(output_comp), unnormalize(gt)),
                  dim=0))
    save_image(grid, filename)
Пример #3
0
def test_hrnet_semgcn(hrnet, semgcn, argmax, test_loader, p3d_mean, p3d_std):
    hrnet.eval()
    semgcn.eval()
    for idx, img in enumerate(test_loader):
        img = img.to(DEVICE)

        # forward
        pred_heatmap = hrnet(img)
        pred_p2d = argmax(pred_heatmap).view([-1, 17, 2])
        pred_p3d = semgcn(pred_p2d).view([BATCHSIZE_TEST,
                                          -1]).cpu().detach().numpy().reshape(
                                              [BATCHSIZE_TEST, -1, 3])
        pred_p3d_unnorm = util.unnormalize(pose3d_norm=pred_p3d,
                                           mean=p3d_mean,
                                           std=p3d_std,
                                           num_joints=17)
        pred_p3d_unnorm = pred_p3d_unnorm.reshape([-1, 51])

        # record
        if not idx:
            predictions = pred_p3d_unnorm
        else:
            predictions = np.concatenate([predictions, pred_p3d_unnorm],
                                         axis=0)

    return predictions
Пример #4
0
def train(model, train_loader, val_loader, optimizer, p3d_mean, p3d_std,
          traincounter):
    model.train()
    val_joint_error_mean = 1000
    val_PA_MPJPE_mean = 1000
    loader = tqdm(train_loader)
    for _, (_, pose3d, pose3d_norm, pose2d, _) in enumerate(loader):
        p3d_gt_norm, p2d = pose3d_norm.to(DEVICE), pose2d.to(
            DEVICE).float().view([-1, 17, 2])

        # forward
        p3d_pred = model(p2d).view([-1, 51])
        loss = F.mse_loss(p3d_gt_norm, p3d_pred, reduction='mean')

        # backward
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # unnormalize groundtruth pose3d
        p3d_gt_unnorm = pose3d.cpu().detach().numpy().reshape(
            [BATCHSIZE, -1, 3])
        p3d_pelvis = p3d_gt_unnorm[:, 0, :]
        p3d_pelvis = np.expand_dims(p3d_pelvis, axis=1)
        p3d_pelvis = np.repeat(p3d_pelvis, 17, axis=1)
        p3d_gt_unnorm = p3d_gt_unnorm - p3d_pelvis

        # unnormalize predicted pose3d
        p3d_pred_np = p3d_pred.cpu().detach().numpy().reshape(
            [BATCHSIZE, -1, 3])
        p3d_pred_unnorm = util.unnormalize(pose3d_norm=p3d_pred_np,
                                           mean=p3d_mean,
                                           std=p3d_std,
                                           num_joints=17)

        traincounter += 1

        if not traincounter % 1000:
            torch.save(model.state_dict(), MODEL_PATH + SEMGCN)
        if not traincounter % 5000:
            val_joint_error_mean, val_PA_MPJPE_mean = validation(
                model=model,
                val_loader=val_loader,
                p3d_mean=p3d_mean,
                p3d_std=p3d_std)
            print('val_joint_error_mean: {}, val_PA_MPJPE_mean: {}'.format(
                val_joint_error_mean, val_PA_MPJPE_mean))
        MPJPE = util.get_error(pose3d_pred=p3d_pred_unnorm,
                               pose3d_gt=p3d_gt_unnorm)
        loader.set_description("joint error:{:.4f}, MPJPE: {:.4f}".format(
            MPJPE[0], MPJPE[1]))
        loader.refresh()

    return traincounter
Пример #5
0
    def log_image(self, img, step):
        """Log image into tensorboard """
        # get first image 
        img = img[0]
  
        # unnormalize first image
        img = util.unnormalize(img)

        img[img > 1] = 1
        img[img < 0] = 0 
 
        # log image
        self.writer.add_image('images', img, step)
def Result_Plot(test_loader, model, device, img_mean, img_std):
    #fig, ax = plt.subplots(nrows=10, ncols=5, figsize=(30,30))
    fig = plt.figure(figsize=(30, 30))
    fig.subplots_adjust(hspace=0.1, wspace=0.000001)
    # Get the first batch
    data = next(iter(test_loader))
    input_data = torch.cat([data[0], data[1]], dim=1)
    input_data = input_data.to(device)
    mask_label = data[2].to(device)
    depth_label = data[3].to(device)
    # Predict
    pred = model(input_data)
    ctr = 1

    #fig.suptitle("Result os the Trained Model on Test Images", fontweight="bold", fontsize=16)
    for i in range(5):
        plt.axis('off')
        fg_bg = unnormalize(data[1][i], img_mean, img_std)
        plt.subplot(10, 5, ctr)
        plt.imshow(fg_bg)
        if ctr < 6:
            plt.title("FG_BG IMAGE", fontweight="bold", fontsize=20)
        plt.axis('off')
        ctr += 1

        label_mask = unnormalize_1D(data[2][i])
        plt.subplot(10, 5, ctr)
        plt.imshow(label_mask, cmap='gray')
        if ctr < 6:
            plt.title("Ground truth: MASK", fontweight="bold", fontsize=20)
        plt.axis('off')
        ctr += 1

        label_depth = unnormalize_1D(data[3][i])
        plt.subplot(10, 5, ctr)
        plt.imshow(label_depth, cmap='gray')
        if ctr < 6:
            plt.title("Ground truth: DEPTH", fontweight="bold", fontsize=20)

        plt.axis('off')
        ctr += 1

        pred_mask = unnormalize_1D(pred[0][i])
        plt.subplot(10, 5, ctr)
        plt.imshow(pred_mask, cmap='gray')
        if ctr < 6:
            plt.title("Predicted MASK", fontweight="bold", fontsize=20)

        plt.axis('off')
        ctr += 1

        pred_depth = unnormalize_1D(pred[1][i])
        plt.subplot(10, 5, ctr)
        plt.imshow(pred_depth, cmap='gray')
        if ctr < 6:
            plt.title("Predicted DEPTH", fontweight="bold", fontsize=20)

        plt.axis('off')
        ctr += 1

    #plt.tight_layout()
    #plt.subplots_adjust(wspace=0, hspace=0)

    plt.savefig('/content/RESULT_fig.jpg')
    plt.show()