def test(sequences, path): for gn, sequence in sequences.items(): res_path = os.path.join(path, "{}.{}".format(gn, 'txt')) eq_res, eq_time = condition_of_character_equability(sequence, SEQUENCE_LENGTH, ALFAS) write_test_results(eq_res, eq_time, res_path, 'equability') ind_res, ind_time = condition_of_character_independence(sequence, SEQUENCE_LENGTH, ALFAS) write_test_results(ind_res, ind_time, res_path, 'independence') uni_res, uni_time = condition_of_character_uniformity(sequence, SEQUENCE_LENGTH, ALFAS, RS) write_test_results(uni_res, uni_time, res_path, 'uniformity')
# optimizer optimizer = tf.train.AdamOptimizer(0.01) train = optimizer.minimize(loss) # training loop sess = tf.Session() sess.run(tf.global_variables_initializer()) for i in range(1000): sess.run(train, {x: x_train, y: y_train}) # Create dirs as necessary if not os.path.exists(CHKP_DIR_NAME): os.makedirs(CHKP_DIR_NAME) # Save model's checkpoint files tf.train.Saver().save(sess, os.path.join(CHKP_DIR_NAME, GRAPH_NAME + '.chkp')) tf.summary.FileWriter(CHKP_DIR_NAME, sess.graph) # Freeze graph freeze_graph(chkp_dir=CHKP_DIR_NAME, out_dir=PB_DIR_NAME, graph_name=GRAPH_NAME, output_node_names=['outputx']) # Output results for tests test_inputs = read_test_results(in_dir=IN_DIR_NAME, file_name="tf.in") test_results = [] for test_input in test_inputs: test_results.append(sess.run(model, feed_dict={ x: test_input })) write_test_results(result_list=test_results, out_dir=OUT_DIR_NAME, file_name="tf.out")