# CTC Beam Search Decoder to decode pred string from the prob map decoded, log_prob = tf.nn.ctc_beam_search_decoder(logits, SeqLens) #Reading test data... InputListTest, SeqLensTest, _ = ReadData(cfg.TEST_LOCATION, cfg.TEST_LIST, cfg.TEST_NB, WND_HEIGHT, WND_WIDTH, WND_SHIFT, VEC_PER_WND, '') print('Initializing...') session = tf.Session() session.run(tf.global_variables_initializer()) LoadModel(session, cfg.SaveDir + '/') try: session.run(tf.assign(phase_train, False)) randIxs = range(0, len(InputListTest)) start, end = (0, cfg.BatchSize) batch = 0 while end <= len(InputListTest): batchInputs = [] batchSeqLengths = [] for batchI, origI in enumerate(randIxs[start:end]): batchInputs.extend(InputListTest[origI]) batchSeqLengths.append(SeqLensTest[origI])
LogFile.flush() session = tf.Session() session.run(tf.global_variables_initializer()) LocalTrainSummary = tf.summary.merge([TrainLoss_s, TrainError_s]) OverallSummary = tf.summary.merge([ OverallTrainingLoss_s, OverallTrainingError_s, OverallValidationLoss_s, OverallValidationError_s ]) SummaryWriter = tf.summary.FileWriter(cfg.LogDir, session.graph) if cfg.StartingEpoch != 0: LoadModel(session, cfg.SaveDir + '/') try: for epoch in range(cfg.StartingEpoch, cfg.NEpochs): LogFile.write( "######################################################\n") LogFile.write("Training Data\n") LogFile.flush() TrainingLoss = [] TrainingError = [] if cfg.RandomBatches == True: randIxs = np.random.permutation(len(inputList)) else: