Пример #1
0
    def Mutate(self, instance):
        ("\t\tinput  " + instance.ToString())
        instance = inst(copy.deepcopy(instance.val), self.gen.consts)

        Hoef = np.zeros(self.nActions)
        for a in range(self.nActions):
            Hoef[a] = self.empiricalMeans[a] + np.sqrt(
                (2.0 * np.log(self.n + 1.0)) / self.N[a])
        self.lastAction = -1
        maxVal = np.NINF
        for a in range(self.nActions):
            if Hoef[a] > maxVal:
                self.lastAction, maxVal = a, Hoef[a]

        oper = self.ops[self.lastAction]

        LogPrint("\t\taction = " + oper.name, verbose=3)
        done = False
        c = 0
        while not done and c < 50:
            [instance,
             done] = replace_fixed_op_randomly(instance,
                                               self.ops[self.lastAction],
                                               self.gen)
            c += 1
        LogPrint("\t\treturn " + instance.ToString(), verbose=3)
        return instance
Пример #2
0
    def Mutate(self, instance):
        LogPrint("\t\tinput  " + instance.ToString(), verbose=3)
        instance = inst(copy.deepcopy(instance.val), self.gen.consts)

        #Sample
        R = np.zeros([self.nActions, self.k])
        for a in range(self.nActions):
            for i in range(self.k):
                R[a][i] = np.random.beta(self.alphaBetaPairs[a][0],
                                         self.alphaBetaPairs[a][1])
        for a in range(self.nActions):
            sum = 0.0
            for i in range(self.k):
                sum += R[a][i]
            self.empiricalMeans[a] = 1.0 / self.k * sum

        self.lastAction = -1
        val = np.NINF
        for a in range(self.nActions):
            if self.empiricalMeans[a] > val:
                self.lastAction, val = a, self.empiricalMeans[a]

        oper = self.ops[self.lastAction]

        LogPrint("\t\taction = " + oper.name, verbose=3)
        done = False
        c = 0
        while not done and c < 50:
            [instance,
             done] = replace_fixed_op_randomly(instance,
                                               self.ops[self.lastAction],
                                               self.gen)
            c += 1
        LogPrint("\t\treturn " + instance.ToString(), verbose=3)
        return instance
Пример #3
0
    def Mutate(self, instance):
        LogPrint("\t\tinput  " + instance.ToString(), verbose=3)
        instance = inst(copy.deepcopy(instance.val), self.gen.consts)
        self.lastAction = -1
        if np.random.rand(1)[0] < self.epsilon:
            self.lastAction = np.random.randint(0, self.nActions)
        else:
            val = np.NINF
            for a in range(self.nActions):
                if self.empiricalMeans[a] > val:
                    self.lastAction, val = a, self.empiricalMeans[a]
        oper = self.ops[self.lastAction]

        LogPrint("\t\taction = " + oper.name, verbose=3)
        done = False
        c = 0
        while not done and c < 50:
            [instance,
             done] = replace_fixed_op_randomly(instance,
                                               self.ops[self.lastAction],
                                               self.gen)
            c += 1
        LogPrint("\t\treturn " + instance.ToString(), verbose=3)

        return instance
Пример #4
0
    def ReadModel(self):
        try:
            with open("models/" + self.name + str(self.id) + ".model",
                      'r') as file:
                lines = file.readlines()

                self.N = []
                lines[0] = lines[0].split(" ")
                while lines[0][-1] == "" or lines[0][-1] == "\n":
                    lines[0].pop()
                for i in range(len(lines[0])):
                    self.N.append(int(lines[0][i]))

                self.empiricalMeans = []
                lines[1] = lines[1].split(" ")
                while lines[1][-1] == "" or lines[1][-1] == "\n":
                    lines[1].pop()
                for i in range(len(lines[1])):
                    self.empiricalMeans.append(float(lines[1][i]))

                self.n = int(lines[2])

                self.nIter = int(lines[3])

        except IOError as e:
            LogPrint("Couldn't open model.", verbose=3)
Пример #5
0
 def WriteModel(self):
     try:
         with open("models/" + self.name + str(self.id) + ".model",
                   'w') as file:
             file.write(str(self.nIter) + "\n")
     except IOError as e:
         LogPrint("Couldn't save file.", verbose=3)
Пример #6
0
    def ReadModel(self):
        try:
            with open("models/" + self.name + str(self.id) + ".model",
                      'r') as file:
                lines = file.readlines()
                self.nIter = int(lines[0])

        except IOError as e:
            LogPrint("Couldn't open model.", verbose=3)
Пример #7
0
    def Reward(self, rewardVal):
        if rewardVal >= 0:
            self.alphaBetaPairs[self.lastAction][0] += 1
            rewardVal = 1.0
        else:
            self.alphaBetaPairs[self.lastAction][1] += 1
            rewardVal = 0.0

        LogPrint("\t\tempirical means = " + str(self.empiricalMeans),
                 verbose=3)
        with open("models/" + self.name + str(self.id) + ".rewards",
                  "a") as myfile:
            myfile.write(str(rewardVal) + "\n")

        self.nIter += 1
Пример #8
0
    def WriteModel(self):
        try:
            with open("models/" + self.name + str(self.id) + ".model",
                      'w') as file:
                file.write(str(self.k) + "\n")

                for i in range(len(self.alphaBetaPairs)):
                    file.write(
                        str(self.alphaBetaPairs[i][0]) + " " +
                        str(self.alphaBetaPairs[i][1]) + " ")
                file.write("\n")

                file.write(str(self.nIter) + "\n")

        except IOError as e:
            LogPrint("Couldn't save file.", verbose=3)
Пример #9
0
    def WriteModel(self):
        try:
            with open("models/" + self.name + str(self.id) + ".model",
                      'w') as file:
                for i in range(len(self.N)):
                    file.write(str(self.N[i]) + " ")
                file.write("\n")

                for i in range(len(self.empiricalMeans)):
                    file.write(str(self.empiricalMeans[i]) + " ")
                file.write("\n")

                file.write(str(self.n) + "\n")

                file.write(str(self.nIter) + "\n")

        except IOError as e:
            LogPrint("Couldn't save file.", verbose=3)
Пример #10
0
    def Reward(self, rewardVal):

        if rewardVal >= 0:
            rewardVal = 1.0
        else:
            rewardVal = 0.0

        self.empiricalMeans[self.lastAction] = (
            self.N[self.lastAction] * self.empiricalMeans[self.lastAction] +
            rewardVal) / (self.N[self.lastAction] + 1)
        self.N[self.lastAction] += 1
        self.n += 1
        LogPrint("\t\tempirical means = " + str(self.empiricalMeans),
                 verbose=3)
        with open("models/" + self.name + str(self.id) + ".rewards",
                  "a") as myfile:
            myfile.write(str(rewardVal) + "\n")
        self.nIter += 1
Пример #11
0
    def ReadModel(self):
        try:
            with open("models/" + self.name + str(self.id) + ".model",
                      'r') as file:
                lines = file.readlines()
                self.k = int(lines[0])

                self.alphaBetaPairs = []
                lines[1] = lines[1].split(" ")
                while lines[1][-1] == "" or lines[1][-1] == "\n":
                    lines[1].pop()
                for i in range(self.nActions):
                    self.alphaBetaPairs.append(
                        [int(lines[1][2 * i]),
                         int(lines[1][2 * i + 1])])

                self.nIter = int(lines[2])

        except IOError as e:
            LogPrint("Couldn't open model.", verbose=3)
Пример #12
0
    def FuzzerLoop(self):
        LogPrint("Fuzzer Start")
        hardnessLog = []
        population = []
        ret = []
        log = open(
            "tmpdata/run" + self.logName + str(Settings.PythonRandomSeed) +
            self.mutater.name + ".txt", "w")
        instanceSet = set()
        for iter in range(self.nIter):
            LogPrint("----------------------------------------------------")
            LogPrint("Starting Generation #" + str(iter))
            if iter != 0 and hardnessLog[
                    -1] >= Settings.SolverTimeout and Settings.FuzzerOverrideTerminationOnMaxScore == False:
                LogPrint("Achieved expected score, Fuzzing Complete.")
                while len(hardnessLog) < self.nIter:
                    hardnessLog.append(hardnessLog[-1])
                    log.write(str(hardnessLog[-1]) + "\n")
                    log.flush()
                break
            LogPrint("Solving.")
            if iter == 0:
                for i in range(self.startPop):
                    inst = self.gen.gen()
                    while inst.ToString() in instanceSet:
                        inst = self.gen.gen()
                    instanceSet.add(inst.ToString())
                    population.append(inst)
                for i in range(self.startPop):
                    for j in range(len(self.solvers)):
                        self.solvers[j].Solve(population[i], self.gen.consts)
                    LogPrint("\t(" + str(i + 1) + "/" + str(self.startPop) +
                             ")\t" + "Score = " + str(population[i].Score()) +
                             "\tTime = " + str(population[i].times) +
                             "\tIsSat = " + str(population[i].stdout))
            else:
                assert len(population) == self.nKeepBest, "error"
                n = 0
                for i in range(self.nKeepBest):
                    LogPrint("\t(" + str(n + 1) + "/" + str(self.nPop) +
                             ")\t Kept Inst\t" + "Score = " +
                             str(population[i].Score()) + "\tTime = " +
                             str(population[i].times) + "\tIsSat = " +
                             str(population[i].stdout))
                    n += 1
                for imut in range(self.nMutations):
                    inst = self.mutater.Mutate(population[i])
                    mutFail = False
                    if inst.ToString() in instanceSet:
                        mutFail = True
                        while inst.ToString() in instanceSet:
                            inst = self.gen.gen()
                            LogPrint("\t Mutation Failed.")
                    instanceSet.add(inst.ToString())
                    population.append(inst)
                    for k in range(len(self.solvers)):
                        self.solvers[k].Solve(population[-1], self.gen.consts)
                    if Settings.BanditTrainingMode and not mutFail:
                        self.mutater.Reward(population[0].Score() -
                                            population[imut].Score())
                    LogPrint("\t(" + str(n + 1) + "/" + str(self.nPop) +
                             ")\t Mutated Inst\t" + "Score = " +
                             str(population[-1].Score()) + "\tTime = " +
                             str(population[-1].times) + "\tIsSat = " +
                             str(population[-1].stdout))
                    n += 1
                    if Settings.BanditTrainingMode:
                        if self.mutater.nIter >= Settings.BanditNumberTrainingIterations:
                            sys.exit(1)

                for i in range(self.nRandom):
                    inst = self.mutater.Mutate(population[i])
                    if inst.ToString() in instanceSet:
                        while inst.ToString() in instanceSet:
                            inst = self.gen.gen()
                    population.append(inst)
                    for j in range(len(self.solvers)):
                        self.solvers[j].Solve(population[-1], self.gen.consts)
                    LogPrint("\t(" + str(n + 1) + "/" + str(self.nPop) +
                             ")\tRand Inst\t" + "Score = " +
                             str(population[-1].Score()) + "\tTime = " +
                             str(population[-1].times) + "\tIsSat = " +
                             str(population[-1].stdout))
                    n += 1
            self.mutater.WriteModel()
            population.sort()

            hardestSum = 0.0
            LogPrint(
                "Testing Finished, analyzing and creating next generation.")
            ret = []
            for i in range(self.nKeepBest):
                hardestSum += population[-1 - i].Score()
                ret.append(population[-1 - i])

            LogPrint(" Hardest Average = " + str(hardestSum / self.nKeepBest))
            hardnessLog.append(hardestSum / self.nKeepBest)
            log.write(str(hardestSum / self.nKeepBest) + "\n")
            log.flush()
            population = ret
            population[0].ToFile("tmpdata/final/" + "run" + self.logName +
                                 str(Settings.PythonRandomSeed) +
                                 self.mutater.name)
        self.mutater.WriteModel()
        if len(hardnessLog) == self.nIter:
            LogPrint("Ranout of iterations.")
        return ret
Пример #13
0
if args.e1 == None:
    if "CIFAR" in args.dataset:
        args.e1 = pretrained_be_path["CIFAR10"]
    elif args.dataset == "MNIST":
        key = "MNIST" + args.which_lenet
        args.e1 = pretrained_be_path[key]
args.e1 = check_path(args.e1)
args.e2 = check_path(args.e2)
args.pretrained_dir = check_path(args.pretrained_dir)
args.adv_train = int(args.mode[-1])
num_channel = 1 if args.dataset == "MNIST" else 3

# Set up directories and logs, etc.
TimeID, ExpID, rec_img_path, weights_path, log = set_up_dir(
    args.project_name, args.resume, args.CodeID)
logprint = LogPrint(log)
args.ExpID = ExpID

if __name__ == "__main__":
    # Set up model
    AE = AutoEncoders[args.mode]
    ae = AE(args).cuda()

    # Set up exponential moving average
    ema_dec = []
    ema_se = []
    for di in range(1, args.num_dec + 1):
        ema_dec.append(EMA(args.ema_factor))
        dec = eval("ae.d%s" % di)
        for name, param in dec.named_parameters():
            if param.requires_grad: