Пример #1
0
###############

model_valid = vae('valid', **C)

if A.profile:
    from util_tf import profile
    with tf.Session() as sess:
        tf.global_variables_initializer().run()
        with tf.summary.FileWriter(pform(P.log, A.trial), sess.graph) as wtr:
            profile(sess, wtr, model_valid.loss, {
                model_valid.src: valid[:32],
                model_valid.tgt: valid[:32]
            })
if not A.rounds: sys.exit("profiling done")

src, tgt = pipe(batch, (tf.int32, tf.int32), prefetch=A.prefetch)
model_train = vae('train', src=src, tgt=tgt, **C)

############
# training #
############

sess = tf.InteractiveSession()
saver = tf.train.Saver()
if A.ckpt:
    saver.restore(sess, pform(P.ckpt, A.ckpt))
else:
    tf.global_variables_initializer().run()

wtr = tf.summary.FileWriter(pform(P.log, A.trial))
summary = tf.summary.merge(
Пример #2
0
# valid_da, train_da = np.load(pform(P.data, "valid_da.npy")), np.load(pform(P.data, "train_da.npy"))
valid_sv, train_sv = np.load(pform(P.data, "valid_sv.npy")), np.load(pform(P.data, "train_sv.npy"))

data_index =        0,        2,        4
data_valid = valid_en, valid_de, valid_sv
data_train = train_en, train_de, train_sv

def batch(arrs, size= C.batch_train, seed= C.seed):
    size //= len(arrs) * (len(arrs) - 1)
    for i in batch_sample(len(arrs[0]), size, seed):
        yield tuple(arr[i] for arr in arrs)

perm = comp(tuple, partial(permutations, r= 2))
data_index = perm(data_index)
data_valid = perm(data_valid)
data_train = perm(pipe(partial(batch, data_train), (tf.int32,)*len(data_train), prefetch= 16))

###############
# build model #
###############

model = Model.new(**select(C, *Model._new))
valid = tuple(model.data(i, j).valid() for i, j in data_index)
train = tuple(model.data(i, j, s, t).train(**T) for (i, j), (s, t) in zip(data_index, data_train))

model.lr   = train[0].lr
model.step = train[0].step
model.errt = train[0].errt
model.loss = tf.add_n([t.loss for t in train])
model.down = tf.train.AdamOptimizer(model.lr, T.beta1, T.beta2, T.epsilon).minimize(model.loss, model.step)
Пример #3
0
def train(anomaly_class=8):
    #set gpu
    os.environ["CUDA_VISIBLE_DEVICES"] = "0"

    #load data
    (train_images,
     train_labels), (test_images,
                     test_labels) = tf.keras.datasets.mnist.load_data()
    inlier = train_images[train_labels != anomaly_class]
    x_train = np.reshape(inlier, (len(inlier), 28 * 28)) / 255
    #y_train = train_labels[train_labels!=anomaly_class]
    y_train = np.zeros(len(x_train), dtype=np.int8)  # dummy

    outlier = train_images[train_labels == anomaly_class]
    x_test = np.reshape(np.concatenate([outlier, test_images]),
                        (len(outlier) + len(test_images), 28 * 28)) / 255
    y_test = np.concatenate(
        [train_labels[train_labels == anomaly_class], test_labels])
    y_test = [0 if y != anomaly_class else 1 for y in y_test]
    x_test, y_test = unison_shfl(x_test, np.array(y_test))

    path_log = "/cache/tensorboard-logdir/ae"
    path_ckpt = "/project/outlier_detection/ckpt"

    epochs = 400
    batch_size = 700
    dim_btlnk = 32
    mult = 20
    lr_max = 1e-4
    trial = f"dae{anomaly_class}_b{batch_size}_btlnk{dim_btlnk}_lr_{lr_max}m{mult}"
    #trial="test1"
    dim_x = len(x_train[0])

    #reset graphs and fix seeds
    tf.reset_default_graph()
    if 'sess' in globals(): sess.close()
    rand = RandomState(0)
    tf.set_random_seed(0)

    # data pipeline
    batch_fn = lambda: batch2(x_train, y_train, batch_size)
    x, y = pipe(batch_fn, (tf.float32, tf.float32), prefetch=4)
    #z = tf.random_normal((batch_size, z_dim))

    # load graph
    dae = DAE.new(dim_x, dim_btlnk)
    model = DAE.build(dae, x, y, lr_max, mult)

    # start session, initialize variables
    sess = tf.InteractiveSession()
    saver = tf.train.Saver()

    wrtr = tf.summary.FileWriter(pform(path_log, trial))
    #wrtr.add_graph(sess.graph)

    ### if load pretrained model
    # pretrain = "modelname"
    #saver.restore(sess, pform(path_ckpt, pretrain))
    ### else:
    auc_vars = tf.get_collection(tf.GraphKeys.LOCAL_VARIABLES, scope='AUC')
    init = tf.group(tf.global_variables_initializer(),
                    tf.variables_initializer(var_list=auc_vars))
    sess.run(init)

    def log(step,
            wrtr=wrtr,
            log=tf.summary.merge([
                tf.summary.scalar('g_loss', model.g_loss),
                tf.summary.scalar('d_loss', model.d_loss),
                tf.summary.image('gx400',
                                 spread_image(model.gx[:400], 20, 20, 28, 28)),
                tf.summary.image('dgx400',
                                 spread_image(model.dgx[:400], 20, 20, 28,
                                              28)),
                tf.summary.image('dx400',
                                 spread_image(model.dx[:400], 20, 20, 28, 28)),
                tf.summary.scalar("AUC_dgx", model.auc_dgx),
                tf.summary.scalar("AUC_dx", model.auc_dx),
                tf.summary.scalar("AUC_gx", model.auc_gx)
            ]),
            y=y_test,
            x=x_test):
        wrtr.add_summary(sess.run(log, {model.x: x, model.y: y}), step)
        wrtr.flush()

    steps_per_epoch = len(x_train) // batch_size
    for epoch in tqdm(range(epochs)):
        for i in range(steps_per_epoch):
            sess.run(model.d_step)
            sess.run(model.g_step)

        # tensorboard writer
        log(sess.run(model["step"]) // steps_per_epoch)

    saver.save(sess, pform(path_ckpt, trial), write_meta_graph=False)
Пример #4
0
def train(anomaly_class, loss_type):
    #set gpu
    os.environ["CUDA_VISIBLE_DEVICES"] = "1"

    #load data
    (train_images,
     train_labels), (test_images,
                     test_labels) = tf.keras.datasets.mnist.load_data()
    inlier = train_images[train_labels != anomaly_class]
    x_train = np.reshape(inlier, (len(inlier), 28 * 28)) / 255
    #y_train = train_labels[train_labels!=anomaly_class]
    y_train = np.zeros(len(x_train), dtype=np.int8)  # dummy
    outlier = train_images[train_labels == anomaly_class]
    x_test = np.reshape(np.concatenate([outlier, test_images]),
                        (len(outlier) + len(test_images), 28 * 28)) / 255
    y_test = np.concatenate(
        [train_labels[train_labels == anomaly_class], test_labels])
    y_test = [0 if y != anomaly_class else 1 for y in y_test]
    x_test, y_test = unison_shfl(x_test, np.array(y_test))

    path_log = "/cache/tensorboard-logdir/ae"
    path_ckpt = "/project/outlier_detection/ckpt"

    epochs = 400
    batch_size = 700
    dim_btlnk = 32
    dim_z = dim_btlnk
    dim_dense = 32
    accelerate = 1e-5
    context_weight = 1
    trial = f"vaegan_{loss_type}_{anomaly_class}_b{batch_size}_btlnk{dim_btlnk}_d{dim_dense}_n{dim_z}_a{accelerate}"

    dim_x = len(x_train[0])
    #reset graphs and fix seeds
    tf.reset_default_graph()
    if 'sess' in globals(): sess.close()
    rand = RandomState(0)
    tf.set_random_seed(0)

    # data pipeline
    batch_fn = lambda: batch2(x_train, y_train, batch_size, dim_z)
    x, y, z = pipe(batch_fn, (tf.float32, tf.float32, tf.float32), prefetch=4)

    # load graph
    aegan = VAEGAN.new(dim_x, dim_btlnk, dim_dense, dim_z, accelerate)
    model = VAEGAN.build(aegan, x, y, z, loss_type)

    # start session, initialize variables

    sess = tf.InteractiveSession()
    saver = tf.train.Saver()

    wrtr = tf.summary.FileWriter(pform(path_log, trial))
    #wrtr.add_graph(sess.graph)

    ### if load pretrained model
    # pretrain = "modelname"
    #saver.restore(sess, pform(path_ckpt, pretrain))
    ### else:
    auc_vars = tf.get_collection(tf.GraphKeys.LOCAL_VARIABLES, scope='AUC')
    init = tf.group(tf.global_variables_initializer(),
                    tf.variables_initializer(var_list=auc_vars))
    sess.run(init)

    def log(
            step,
            wrtr=wrtr,
            log=tf.summary.
        merge([
            tf.summary.scalar('g_loss', model.g_loss),
            tf.summary.scalar('d_loss', model.d_loss),
            tf.summary.scalar('mu', model.m),
            tf.summary.scalar('lv', model.l),
            tf.summary.image('gzx400',
                             spread_image(model.gzx[:400], 20, 20, 28, 28))
            #, tf.summary.image('gz400', spread_image(model.gz[:400], 20,20,28,28))
            ,
            tf.summary.scalar("AUC_gzx", model.auc_gzx),
            tf.summary.scalar("AUC_dgzx", model.auc_dgzx),
            tf.summary.scalar("AUC_dx", model.auc_dx)
            #, tf.summary.scalar("gz_loss",model.gz_loss)
            ,
            tf.summary.scalar("gzx_loss", model.gzx_loss),
            tf.summary.scalar("ftr_loss", model.ftr_loss),
            tf.summary.scalar("kl_loss", model.kl_loss),
            tf.summary.scalar("dx_loss", model.dx_loss)
            #, tf.summary.scalar("dgz_loss",model.dgz_loss)
            ,
            tf.summary.scalar("dgzx_loss", model.dgzx_loss)
        ]),
            y=y_test,
            x=x_test):
        mu = sess.run(model.mu, {model.x: x})
        wrtr.add_summary(sess.run(log, {
            model.zx: mu,
            model.x: x,
            model.y: y
        }), step)
        wrtr.flush()

    steps_per_epoch = len(x_train) // batch_size
    for epoch in tqdm(range(epochs)):
        for i in range(steps_per_epoch):
            sess.run(model.g_step)
            sess.run(model.d_step)

        # tensorboard writer
        #log(sess.run(model["step"])//steps_per_epoch)
        log(sess.run(model["step"] // steps_per_epoch))

    saver.save(sess, pform(path_ckpt, trial), write_meta_graph=False)
Пример #5
0
    val = np.array(
        sorted(range(len(tgt_valid)),
               key=lambda i: max(len(src_valid[i]), len(tgt_valid[i]))))
    src_valid = src_valid[val]
    tgt_valid = tgt_valid[val]

    def feed(src, tgt, cws=cws, cwt=cwt):
        src_idx, len_src = cws(src, ret_img=False, ret_idx=True)
        tgt_img, tgt_idx, len_tgt = cwt(tgt, ret_img=True, ret_idx=True)
        return src_idx, len_src, tgt_img, tgt_idx, len_tgt

    def batch(src=src_train, tgt=tgt_train, size=128, seed=0):
        for bat in batch_sample(len(tgt), size, seed):
            yield feed(src[bat], tgt[bat])

    src_idx, len_src, tgt_img, tgt_idx, len_tgt = pipe(
        batch, (tf.int32, tf.int32, tf.uint8, tf.int32, tf.int32))
    train = model('train', cws.dwh(), cwt.dwh(), src_idx, len_src, tgt_img,
                  tgt_idx, len_tgt)
    valid = model('valid', cws.dwh(), cwt.dwh())
    dummy = tuple(placeholder(tf.float32, ()) for _ in range(3))

    def log(step,
            wtr=tf.summary.FileWriter("../log/{}".format(trial)),
            log=tf.summary.merge((tf.summary.scalar('step_mae', dummy[0]),
                                  tf.summary.scalar('step_xid', dummy[1]),
                                  tf.summary.scalar('step_err', dummy[2]))),
            fet=(valid.mae, valid.xid, valid.err),
            inp=(valid.src_idx, valid.len_src, valid.tgt_img, valid.tgt_idx,
                 valid.len_tgt),
            src=src_valid,
            tgt=tgt_valid,
def train(anomaly_class=8,
          dataset="cifar",
          n_dis=1,
          epochs=25,
          dim_btlnk=32,
          batch_size=64,
          loss="mean",
          context_weight=1,
          dim_d=64,
          dim_g=64,
          extra_layers=0,
          gpu="0"):

    #set gpu
    os.environ["CUDA_VISIBLE_DEVICES"] = gpu

    path_log = f"/cache/tensorboard-logdir/{dataset}"
    path_ckpt = "/project/multi-discriminator-gan/ckpt"
    path_data = "/project/multi-discriminator-gan/data"

    #reset graphs and fix seeds
    tf.reset_default_graph()
    if 'sess' in globals(): sess.close()
    rand = RandomState(0)
    tf.set_random_seed(0)

    #load data
    if dataset == "ucsd1":
        x_train = np.load("./data/ucsd1_train_x.npz")["arr_0"] / 255
        y_train = np.load("./data/ucsd1_train_y.npz")["arr_0"]
        x_test = np.load("./data/ucsd1_test_x.npz")["arr_0"] / 255
        y_test = np.load("./data/ucsd1_test_y.npz")["arr_0"]

    elif dataset == "uscd2":
        x_train = np.load("./data/ucsd2_train_x.npz")["arr_0"]
        y_train = np.load("./data/ucsd2_train_y.npz")["arr_0"]
        x_test = np.load("./data/ucsd2_test_x.npz")["arr_0"]
        y_test = np.load("./data/ucsd2_test_y.npz")["arr_0"]

    else:
        if dataset == "mnist":
            (train_images, train_labels), (
                test_images,
                test_labels) = tf.keras.datasets.mnist.load_data()
            train_images = resize_images(train_images)
            test_images = resize_images(test_images)
        else:
            (train_images, train_labels), (
                test_images,
                test_labels) = tf.keras.datasets.cifar10.load_data()
            train_labels = np.reshape(train_labels, len(train_labels))
            test_labels = np.reshape(test_labels, len(test_labels))

        inlier = train_images[train_labels != anomaly_class]
        #data_size = prod(inlier[0].sha
        x_train = inlier / 255
        #x_train = np.reshape(inlier, (len(inlier), data_size))/255
        #y_train = train_labels[train_labels!=anomaly_class]
        y_train = np.zeros(len(x_train), dtype=np.int8)  # dummy
        outlier = train_images[train_labels == anomaly_class]
        x_test = np.concatenate([outlier, test_images]) / 255
        #x_test = np.reshape(np.concatenate([outlier, test_images])
        #                    ,(len(outlier)+len(test_images), data_size))/255
        y_test = np.concatenate(
            [train_labels[train_labels == anomaly_class], test_labels])
        y_test = [0 if y != anomaly_class else 1 for y in y_test]
        x_test, y_test = unison_shfl(x_test, np.array(y_test))

    img_size_x = x_train[0].shape[0]
    img_size_y = x_train[0].shape[1]
    channel = x_train[0].shape[-1]
    trial = f"{dataset}_{loss}_dis{n_dis}_{anomaly_class}_w{context_weight}_btlnk{dim_btlnk}_d{dim_d}_g{dim_g}e{extra_layers}"

    # data pipeline
    batch_fn = lambda: batch2(x_train, y_train, batch_size)
    x, y = pipe(batch_fn, (tf.float32, tf.float32), prefetch=4)
    #z = tf.random_normal((batch_size, z_dim))

    # load graph
    mg_gan = MG_GAN.new(img_size_x,
                        channel,
                        dim_btlnk,
                        dim_d,
                        dim_g,
                        n_dis,
                        extra_layers=0)
    model = MG_GAN.build(mg_gan, x, y, context_weight, loss)

    # start session, initialize variables

    sess = tf.InteractiveSession()
    saver = tf.train.Saver()

    wrtr = tf.summary.FileWriter(pform(path_log, trial))
    wrtr.add_graph(sess.graph)

    ### if load pretrained model
    # pretrain = "modelname"
    #saver.restore(sess, pform(path_ckpt, pretrain))
    ### else:
    auc_vars = tf.get_collection(tf.GraphKeys.LOCAL_VARIABLES, scope='AUC')
    init = tf.group(tf.global_variables_initializer(),
                    tf.variables_initializer(var_list=auc_vars))
    sess.run(init)

    #if "ucsd" in dataset:
    summary_test = tf.summary.merge([
        tf.summary.scalar('g_loss', model.g_loss),
        tf.summary.scalar("lambda", model.lam),
        tf.summary.scalar("gl_rec", model.gl_rec),
        tf.summary.scalar("gl_adv", model.gl_adv),
        tf.summary.scalar("gl_lam", model.gl_lam),
        tf.summary.scalar('d_loss_mean', model.d_loss_mean),
        tf.summary.scalar('d_max', model.d_max)
        #, tf.summary.scalar('d_loss', model.d_loss)
        ,
        tf.summary.scalar("AUC_gx", model.auc_gx)
    ])
    if dataset == "ucsd1":
        summary_images = tf.summary.merge(
            (tf.summary.image("gx", model.gx, max_outputs=8),
             tf.summary.image("x", model.x, max_outputs=8),
             tf.summary.image(
                 'gx400',
                 spread_image(tf.concat([model.gx, model.x], axis=1), 8, 2,
                              img_size_x, img_size_y, channel))))
    else:
        summary_images = tf.summary.merge(
            (tf.summary.image("gx", model.gx, max_outputs=8),
             tf.summary.image(
                 'gx400',
                 spread_image(model.gx[:400], 20, 20, img_size_x, img_size_y,
                              channel)),
             tf.summary.image("x", model.x, max_outputs=8)))

    if n_dis > 1:
        d_wrtr = {
            i: tf.summary.FileWriter(pform(path_log, trial + f"d{i}"))
            for i in range(n_dis)
        }
        summary_discr = {
            i: tf.summary.scalar('d_loss_multi', model.d_loss[i])
            for i in range(n_dis)
        }

    def summ(step):
        fetches = model.g_loss, model.lam, model.d_loss_mean, model.auc_gx
        results = map(
            np.mean,
            zip(*(sess.run(fetches, {
                model['x']: x_test[i:j],
                model['y']: y_test[i:j]
            }) for i, j in partition(len(x_test), batch_size, discard=False))))
        results = list(results)
        wrtr.add_summary(sess.run(summary_test, dict(zip(fetches, results))),
                         step)

        if dataset == "ucsd1":
            # bike, skateboard, grasswalk, shopping cart, car, normal, normal, grass
            wrtr.add_summary(
                sess.run(
                    summary_images, {
                        model.x:
                        x_test[[990, 1851, 2140, 2500, 2780, 2880, 3380, 3580]]
                    }), step)
        else:
            wrtr.add_summary(sess.run(summary_images, {model.x: x_test}), step)
        wrtr.flush()

    def summ_discr(step):
        fetches = model.d_loss
        results = map(
            np.mean,
            zip(*(sess.run(fetches, {
                model['x']: x_test[i:j],
                model['y']: y_test[i:j]
            }) for i, j in partition(len(x_test), batch_size, discard=False))))
        results = list(results)
        if n_dis > 1:  # put all losses of the discriminators in one plot
            for i in range(n_dis):
                d_wrtr[i].add_summary(
                    sess.run(summary_discr[i], dict(zip(fetches, results))),
                    step)
                #d_wrtr[i].add_summary(sess.run(summary_discr[i], dict([(fetches[i], results[i])])), step)
                d_wrtr[i].flush()

    #def log(step
    #        , wrtr= wrtr
    #        , log = tf.summary.merge([tf.summary.scalar('g_loss', model.g_loss)
    #                                  , tf.summary.scalar('d_loss', tf.reduce_mean(model.d_loss))
    #                                  , tf.summary.scalar("lambda", model.lam)
    #                                  , tf.summary.image("gx", model.gx, max_outputs=5)
    #                                  , tf.summary.image('gx400', spread_image(model.gx[:400], 20,20, img_size, img_size, channel))
    #                                  #, tf.summary.scalar("AUC_dgx", model.auc_dgx)
    #                                  #, tf.summary.scalar("AUC_dx", model.auc_dx)
    #                                  , tf.summary.scalar("AUC_gx", model.auc_gx)])
    #        , y= y_test
    #        , x= x_test):
    #    wrtr.add_summary(sess.run(log, {model["x"]:x
    #                                    , model["y"]:y})
    #                     , step)
    #    wrtr.flush()

    steps_per_epoch = len(x_train) // batch_size - 1
    for epoch in tqdm(range(epochs)):
        for i in range(steps_per_epoch):
            #sess.run(model["train_step"])
            sess.run(model['d_step'])
            sess.run(model['g_step'])
        # tensorboard writer
        #if "ucsd" in dataset:
        summ(sess.run(model["step"]) // steps_per_epoch)
        #else:
        #    log(sess.run(model["step"])//steps_per_epoch)
        if n_dis > 1:
            summ_discr(sess.run(model["step"]) // steps_per_epoch)

    saver.save(sess, pform(path_ckpt, trial), write_meta_graph=False)