def main(scene_idx=0): #scene_idx = 0 mapper_scene2z = get_mapper() mapper_scene2points = get_mapper_scene2points() Train_Scenes, Test_Scenes = get_train_test_scenes() scene_name = Test_Scenes[scene_idx] num_startPoints = len(mapper_scene2points[scene_name]) num_steps = 35 ## create test folder test_folder = '/home/reza/Datasets/GibsonEnv/my_code/visual_servoing/test_IBVS' ''' approach_folder = '{}/SIFT_interMatrix_gtDepth_Vz_OmegaY'.format(test_folder) create_folder(approach_folder) scene_folder = '{}/{}'.format(approach_folder, scene_name) create_folder(scene_folder) ''' f = open('{}/{}_{}.txt'.format(test_folder, perception_rep, depth_method), 'a') f.write('scene_name = {}\n'.format(scene_name)) list_count_correct = [] list_count_runs = [] list_count_steps = [] ## rrt functions ## first figure out how to sample points from rrt graph rrt_directory = '/home/reza/Datasets/GibsonEnv/gibson/assets/dataset/{}_for_rrt'.format(scene_name) path_finder = rrt.PathFinder(rrt_directory) path_finder.load() num_nodes = len(path_finder.nodes_x) free = cv2.imread('/home/reza/Datasets/GibsonEnv/gibson/assets/dataset/{}_for_rrt/free.png'.format(scene_name), 0) ## GibsonEnv setup ## For Gibson Env import gym, logging from mpi4py import MPI from gibson.envs.husky_env import HuskyNavigateEnv from baselines import logger import skimage.io from transforms3d.euler import euler2quat config_file = os.path.join('/home/reza/Datasets/GibsonEnv/my_code/CVPR_workshop', 'env_yamls', '{}_navigate.yaml'.format(scene_name)) env = HuskyNavigateEnv(config=config_file, gpu_count = 1) obs = env.reset() ## this line is important otherwise there will be an error like 'AttributeError: 'HuskyNavigateEnv' object has no attribute 'potential'' def get_obs(current_pose): pos, orn = func_pose2posAndorn(current_pose, mapper_scene2z[scene_name]) env.robot.reset_new_pose(pos, orn) obs, _, _, _ = env.step(4) obs_rgb = obs['rgb_filled'] obs_depth = obs['depth'] return obs_rgb.copy(), obs_depth.copy() base_folder = '/home/reza/Datasets/GibsonEnv/my_code/visual_servoing/sample_image_pairs_{}'.format('test') ## go through each point folder for point_idx in range(0, num_startPoints): #for point_idx in range(0, 1): print('point_idx = {}'.format(point_idx)) #point_folder = '{}/point_{}'.format(scene_folder, point_idx) #create_folder(point_folder) ## read in start img and start pose point_image_folder = '{}/{}/point_{}'.format(base_folder, scene_name, point_idx) point_pose_npy_file = np.load('{}/{}/point_{}_poses.npy'.format(base_folder, scene_name, point_idx)) start_img = cv2.imread('{}/{}.png'.format(point_image_folder, point_pose_npy_file[0]['img_name']))[:, :, ::-1] start_pose = point_pose_npy_file[0]['pose'] ## index 0 is the left image, so right_img_idx starts from index 1 count_correct = 0 list_correct_img_names = [] list_whole_stat = [] list_steps = [] for right_img_idx in range(1, len(point_pose_npy_file)): #for right_img_idx in range(1, 11): flag_correct = False print('right_img_idx = {}'.format(right_img_idx)) count_steps = 0 current_pose = start_pose right_img_name = point_pose_npy_file[right_img_idx]['img_name'] goal_pose = point_pose_npy_file[right_img_idx]['pose'] goal_img, goal_depth = get_obs(goal_pose) list_result_poses = [current_pose] num_matches = 0 flag_broken = False while count_steps < num_steps: current_img, current_depth = get_obs(current_pose) noise = np.random.normal(0.0, 0.5, (256, 256)) current_depth[:, :, 0] += noise try: kp1, kp2 = detect_correspondences(current_img, goal_img) if count_steps == 0: start_depth = current_depth.copy() except: print('run into error') break num_matches = kp1.shape[1] vx, vz, omegay, flag_stop = compute_velocity_through_correspondences_and_depth(kp1, kp2, current_depth) previous_pose = current_pose current_pose, _, _, flag_stop_goToPose = goToPose_one_step(current_pose, vx, vz, omegay) ## check if there is collision during the action left_pixel = path_finder.point_to_pixel((previous_pose[0], previous_pose[1])) right_pixel = path_finder.point_to_pixel((current_pose[0], current_pose[1])) # rrt.line_check returns True when there is no obstacle if not rrt.line_check(left_pixel, right_pixel, free): flag_broken = True print('run into an obstacle ...') break ## check if we should stop or not if flag_stop or flag_stop_goToPose: print('flag_stop = {}, flag_stop_goToPose = {}'.format(flag_stop, flag_stop_goToPose)) print('break') break count_steps += 1 list_result_poses.append(current_pose) ## sample current_img again to save in list_obs current_img, current_depth = get_obs(current_pose) #assert 1==2 ## decide if this run is successful or not flag_correct, dist, theta_change = similar_location_under_certainThreshold(goal_pose, list_result_poses[count_steps]) print('dist = {}, theta = {}'.format(dist, theta_change)) #print('start_pose = {}, final_pose = {}, goal_pose = {}'.format(start_pose, list_result_poses[-1], goal_pose)) if flag_correct: count_correct += 1 list_correct_img_names.append(right_img_name[10:]) if flag_correct: str_succ = 'Success' print('str_succ = {}'.format(str_succ)) else: str_succ = 'Failure' print('str_succ = {}'.format(str_succ)) list_steps.append(len(list_result_poses)) ## =================================================================================================================== ## plot the pose graph ''' img_name = 'goTo_{}.jpg'.format(right_img_name[10:]) print('img_name = {}'.format(img_name)) ## plot the poses free2 = cv2.imread('/home/reza/Datasets/GibsonEnv/gibson/assets/dataset/{}_for_rrt/free.png'.format(scene_name), 1) rows, cols, _ = free2.shape plt.imshow(free2) for m in range(len(list_result_poses)): pose = list_result_poses[m] x, y = path_finder.point_to_pixel((pose[0], pose[1])) theta = pose[2] plt.arrow(x, y, cos(theta), sin(theta), color='y', \ overhang=1, head_width=0.1, head_length=0.15, width=0.001) ## draw goal pose x, y = path_finder.point_to_pixel((goal_pose[0], goal_pose[1])) theta = goal_pose[2] plt.arrow(x, y, cos(theta), sin(theta), color='r', \ overhang=1, head_width=0.1, head_length=0.15, width=0.001) plt.axis([0, cols, 0, rows]) plt.xticks([]) plt.yticks([]) plt.title('{}, start point_{}, goal viewpoint {}, {}\n dist = {:.4f} meter, theta = {:.4f} degree\n'.format(scene_name, point_idx, right_img_name[10:], str_succ, dist, theta_change)) plt.savefig('{}/{}'.format(point_folder, img_name), bbox_inches='tight', dpi=(400)) plt.close() ## ====================================================================================================================== ## save stats current_test_dict = {} current_test_dict['img_name'] = right_img_name current_test_dict['success_flag'] = flag_correct current_test_dict['dist'] = dist current_test_dict['theta'] = theta_change current_test_dict['steps'] = count_steps current_test_dict['collision'] = flag_broken list_whole_stat.append(current_test_dict) np.save('{}/runs_statistics.npy'.format(point_folder), list_whole_stat) success_rate = 1.0 * count_correct / (len(point_pose_npy_file)-1) print('count_correct/num_right_images = {}/{} = {}'.format(count_correct, len(point_pose_npy_file)-1, success_rate)) ## write correctly run target image names to file f = open('{}/successful_runs.txt'.format(point_folder), 'w') f.write('count_correct/num_right_images = {}/{} = {}\n'.format(count_correct, len(point_pose_npy_file)-1, success_rate)) for i in range(len(list_correct_img_names)): f.write('{}\n'.format(list_correct_img_names[i])) f.close() print('writing correct run image names to txt ...') ''' avg_steps = 1.0 * sum(list_steps) / len(list_steps) f.write('point {} : {}/{}, {}\n'.format(point_idx, count_correct, len(point_pose_npy_file)-1, avg_steps)) list_count_correct.append(count_correct) list_count_runs.append(len(point_pose_npy_file)-1) list_count_steps.append(avg_steps) f.flush() avg_count_steps = 1.0 * sum(list_count_steps) / len(list_count_steps) f.write('In total : {}/{}, {}\n'.format(sum(list_count_correct), sum(list_count_runs), avg_count_steps)) f.write('-------------------------------------------------------------------------------------\n')
current_depth = gt_current_depth.copy() vx, vz, omegay, flag_stop = compute_velocity_through_correspondences_and_depth( kp1, kp2, current_depth) elif depth_method == 'void': omegay, flag_stop = compute_angular_velocity_through_correspondences( kp1, kp2) vx, vz = 0.0, 0.1 #elif depth_method == 'estimated': previous_pose = current_pose if depth_method == 'void': current_pose = update_current_pose(current_pose, 0.0, 0.1, omegay) flag_stop = flag_stop else: current_pose, _, _, flag_stop_goToPose = goToPose_one_step( current_pose, vx, vz, omegay) ## check if there is collision during the action left_pixel = path_finder.point_to_pixel( (previous_pose[0], previous_pose[1])) right_pixel = path_finder.point_to_pixel( (current_pose[0], current_pose[1])) # rrt.line_check returns True when there is no obstacle if not rrt.line_check(left_pixel, right_pixel, free): flag_broken = True print('run into an obstacle ...') break ## check if we should stop or not if flag_stop or flag_stop_goToPose: print('flag_stop = {}, flag_stop_goToPose = {}'.format(