if PERSIST: pickle.dump(word_indices, open(best_model_word_indices(), 'wb')) if FINAL: print("\n > running in FINAL mode!\n") training, testing = loader.load_final() else: training, validation, testing = loader.load_train_val_test() if POST_MORTEM: print("\n > running in Post-Mortem mode!\n") gold_data = SemEvalDataLoader().get_gold(task=TASK) gX = [obs[1] for obs in gold_data] gy = [obs[0] for obs in gold_data] gold = prepare_dataset(gX, gy, loader.pipeline, loader.y_one_hot) validation = testing testing = gold FINAL = False ############################################################################ # NN MODEL ############################################################################ print("Building NN Model...") nn_model = target_RNN(embeddings, tweet_max_length=text_max_length, aspect_max_length=target_max_length, noise=0.2, activity_l2=0.001, drop_text_rnn_U=0.2,
if FINAL: print("\n > running in FINAL mode!\n") training, testing = loader.load_final() else: training, validation, testing = loader.load_train_val_test() if SEMEVAL_GOLD: print("\n > running in Post-Mortem mode!\n") gold_data = SemEval2017Task6().get_gold_data_task_1() gold_data = [v for k, v in sorted(gold_data.items())] X = [x for hashtag in gold_data for x in hashtag[0]] y = [x for hashtag in gold_data for x in hashtag[1]] gold = prepare_dataset(X, y, loader.pipeline, loader.y_one_hot, y_as_is=loader.subtask == "2") validation = testing testing = gold FINAL = False print("Building NN Model...") nn_model = humor_RNN(embeddings, text_length) # nn_model = humor_CNN(embeddings, text_length) # nn_model = humor_FFNN(embeddings, text_length) plot(nn_model, show_layer_names=True, show_shapes=True, to_file="model_task6_sub{}.png".format(TASK))